

Inkjet Printed Reaction Arrays on Pigment Coated Substrates

42nd iarigai research conference, Helsinki, 07.09.2015

<u>Risto Koivunen¹</u>, Eveliina Jutila¹, Roger Bollström², Patrick Gane^{1,2}

¹ Aalto University, Finland

² Omya International AG, Switzerland

Background

Aalto University School of Chemical Technology

Background 1/4: Aims of the research

- New platforms for paper-based analytical devices, such as ${}^{\bullet}$
 - Paper-based reaction arrays
 - Paper-based microfluidic devices
- Based on local hydrophobisation of hydrophilic substrate
- Possible applications
 - Medical diagnosis
 - Environmental monitoring
 - Laboratory research tools
- Previous research on cellulosic papers
 - Novelty: <u>custom paper coatings</u>

Background 2/4: Paper-based reaction arrays

Contained liquid spreading

Figure: Carrilho et al. Paper Microzone Plates, Analytical Chemistry 81 (15) 2009, pp. 5990-5998.

Background 3/4: **Paper-based microfluidics**

Directed liquid flow along channels

Figure: Li et al. Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors, Cellulose 17 (3) 2010, pp. 649-659.

Aalto University School of Chemical Technoloav

Background 4/4: Paper vs. coating

- Advantages of paper
 - Highly porous, wicking
 - Cheap
 - Disposable
- Benefits of coatings
 - Variable thickness
 - Isolated layers
 - Fine particles and resolution
 - New surface chemistries (immobilisation, separation)

Experimental

Aalto University School of Chemical Technology Department of Forest Products Technology 6.10.2015

7

Experimental 1/4: Pigment coatings

- Applied with laboratory rod coater
 - 100 µm wet thickness (27-76 µm dry)
 - Pigmented polymer film substrate (impermeable)
- Functionalised calcium carbonate (FCC) pigment
 - Hydrophilic surface chemistry
 - High surface area (105 m²g⁻¹)
- 10-50 pph binder

Experimental 2/4: Pigment coating binders

• Micro-fibrillated cellulose (MFC)

- Arbocel MF-40-7 (J. Rettenmaier & Söhne GmbH + Co KG)
- 22.3462 CMCX-TYPE (Omya International AG)
- Polyvinyl alcohol (PVOH)
 - BF05 (Omya International AG)
- Styrene acrylic latex
 - Acronal S 728 (BASF)
- Sodium silicate
 - Product 1056212500 (Merck KGaA)

Experimental 3/4: Hydrophobic inks

• Two custom inks containing

- Solvent (p-xylene)
- 5 % hydrophobising agent, either
 - Polystyrene (PS) or
 - Alkyl ketene dimer (AKD)
- 0.1 % colorant (Sudan red G)
- Inkjet printing
 - Dimatix material printer DMP-2831
 - Ink cartridges with 10 pl nominal drop volume
- AKD ink heat-treated post-printing (100 °C for 10 min)

Experimental 4/4: Test pattern

- Arrays of printed rings (reaction array)
 - 5 mm inner diameter
 - 9 mm outer diameter
- Printing parameters varied
 - Ink applied per unit surface area
 - Number of ink layers
- Tested with liquid drops dosed at centres
 - Coloured water
 - Water-ethanol solutions (select coatings)

Results

Aalto University School of Chemical Technology

Results 1/3: Barrier properties against water

• PS ink as barrier against water

- All coatings could be successfully hydrophobised
- Multiple layers of ink required in most cases to form full barrier
- AKD ink as barrier against water
 - All coatings hydrophobised, except those sodium silicate -bound
 - Hydrophobising the binder required
 - In most cases 1 ink layer sufficed
 - Lower ink volumes compared to PS ink

Results 2/3: Ink layers to form water barrier

Ink	Coating	Nominal ink volume / cm ³ m ⁻²		
		100	44	25
AKD	FCC + MFC A	1 layer	1 layer	2 layers
AKD	FCC + MFC B	1 layer	1 layer	1 layer
AKD	FCC + PVOH	1 layer	1 layer	1 layer
AKD	FCC + SA latex	1 layer	1 layer	1 layer
AKD	FCC + sodium silicate	-	-	-
PS	FCC + MFC A	2 layers	5 layers	Not tested
PS	FCC + MFC B	1 layer	2 layers	4 layers
PS	FCC + PVOH	3 layers	-	Not tested
PS	FCC + SA latex	1 layer	1 layer	-
PS	FCC + sodium silicate	3 layers	-	Not tested

Results 3/3: Barrier properties (other)

• Water-ethanol solutions

- Lower surface tension than plain water
- Can penetrate barriers that contain water
- AKD barrier penetrated with 30 w/w% ethanol
- PS barrier penetrated with 20 w/w% ethanol
- Surfactant solution (1 w/w% Tween 80)
 - Has higher surface tension than 20 w/w% ethanol
 - But still penetrates both AKD and PS barriers
 - Permanent effect (adsorbs to barrier)

Summary

Aalto University School of Chemical Technology

Summary and future work

- AKD and PS inks could hydrophobise coatings
 - Hydrophobising the binder was required
 - AKD was more efficient in most cases

Barrier effectiveness

- Dependent on liquid surface tension
- Surfactants penetrate by adsorption
- Future work
 - Characterising channels
 - Practical applications
- **Question time!**

