Critical evaluations of liquid absorption testing methods for package printing Li Yang and Sofia Thorman

li.yang@innventia.com

Background

- Topography + absorption \rightarrow print quality
- Appropriate and robust measurements
 predictable print quality
- How to measure the absorption properties ?
 - Total absorption
 - Cobb60 ?
 - Bristow wheel ?
 - IGT penetration tester ?
 - ...
 - Absorption non-uniformity
 - Stain technique

Measurement methods

- Two relatively new methods have been evaluated
 - ASA Automatic Scanning Absorptometer
 - ACT Automatic Cobb Tester
- Both methods provide time-resolved absorbency measurements
 - To examine short or long time absorption characteristics
 - Capillary-driven absorption (no external pressure applied)

$$V(t) = V_0 + k\sqrt{t}$$

Paper boards

- Six pilot coated paper boards
 - Different top-coatings on the same precoated base
 - Similar surface roughness
 - But broad absorbency range
- Latex
 - Latex A: vinyl acetate acrylate (VAA)
 - Latex B: styrene butyl acrylate (SBA)
- Pigments

RI. SE

- HC90=Hydrocarb® 90
- SCHG=Setacarb® HG
- Clay=Capim NP delaminated clay
- CCN75 = Covercarb® 75, narrow PSD

No.	Board notation	Coating compositions	Roughness, std. dev , height [µm]	Contact angle, H ₂ O
1	12.5 Latex A	12.5 pph VAA Latex A, 60 pph HC90 + 40 pph SCHG.	0.86	71.2
2	15 Latex A	15 pph VAA Latex A, Pigments as 1.	0.88	75.2
3	20 Latex A	20 pph VAA Latex A, Pigments as 1.	0.76	80.8
4	15 Latex B	15 pph SBA latex B, Pigments as 1.	0.89	84.4
5	40 Clay	15 pph VAA latex. Pigments; 60 pph HC90 + 40 clay	0.83	70.3
6	N75 GCC	15 pph VAA latex. 100 pph CCN75	0.87	73.4
-	Pre-coating	100 pph Hydrocarb® 60 and 13 pph of the VAA latex.		

Measurements

Testing liquids

- ASA
 - 12% (volume) of the condensed blue liquid, methylene blue, diluted in deionized water.
 - 8.6 wt-% n-propanol in order to reduce the surface tension similar to flexographic inks. (38 mj/m2)
- ACT
 - water

Surface roughness

- OptiTopo
 - height standard deviation
 - wavelength interval 0.06-1 mm
- PPS
- Bendtsen

Print trial

- Full-scale printing with an in-line flexographic press at Tetra Pak, Lund, Sweden.
- Print density of a solid cyan area was measured on five consecutive signatures.
 - Spectro-densitometer, SpectroDens (TECHKON GmbH, Königstein, Germany),
 - calibrated against the board white and with the following settings: D50 illumination, 2° observer, polarization filter and density filter ISO E.

Results -- ASA

- Boards of the same pigments but different amounts of latex A
 - Absorption rate decreases with increasing latex

- Different types of latexes A vs. B leads to different liquid absorption
 - Type B shows a wetting delay

Results -- ASA

- The porosity of the coatings affect the liquid absorption
 - Board (N75) having the most porous surface (GCC of narrow PSD)
 - Board with 40% clay is less porous
 - Board having GCC of broad PSD has the lowest porosity.
 - The boards have similar contact angle

Results -- ACT

- The measurements show similar longterm trends as those from ASA
- Less reliable in short-term behaviour
 - More latex, higher absorption
 - − Incorrect measurement at $t \rightarrow 0$
 - In contradictory to the ASA observations

Results -- ACT

- The measurements show similar longterm trends as those from ASA
 - For short term, it is less obvious with less information

No wetting delay observed

INNVENTIA

Surface roughness vs. absorption at $t \rightarrow 0$

- At t=0, the liquid only fills the surface roughness.
- The intercept with the y-axis (t=0) is proportional to surface roughness

INNVENTIA

Comparison between ASA and ACT measurements

www.innventia.com © 2015

- Absorption rates
 - Both methods reveal similar long-term trends
 - The absorption rates of ASA measurements are generally proportional to those of ACT
 - the board 15 Latex B is an exception
- Their short-term observations differs significantly
 - − t< 1.0 s
 - ASA's measurements is probably more reliable
 - makes more sense as it reveal surface topography

INNVENTIA

Print density vs. absorption rates

• There are a clear correlation between the absorption rates of the boards and the respective print densities.

Industrial applications

- Being capable of predicting print quality from unprinted surfaces (paper/board) will help the producers to
 - supply substrates with properties demanded by converters and end-users.
 - develop products of preferred printing surfaces.
 - increase production efficiency and effectiveness by reliable in-house quality control.

Acknowledgements

- KRK KUMAGAI RIKI KOGYO Co., Ltd. and FIBRO system AB for supporting with measurements and allowing us to use their equipment.
- BillerudKorsnäs, Stora Enso and Tetra Pak for financial support.
- The Research Institute of Sweden (RISE) and the Knowledge Foundation via VIPP Industrial Research College – Values Created in Fiber Based Processes and Products – at Karlstad University, Sweden, are also acknowledged.

