Modelling reflectance spectra for special effect pigment coatings

Nina Rogelj, Marta Klanjšek Gunde

Gonioapparent samples are becoming increasingly important.

http://www.autospeed.co.nz/cms/A_110579/article.html

www.alibaba.com

The model incorporates 3 contributing parts of scattering.

Light can follow 4 different paths when undergoing scattering from the substrate.

Scattering from effect pigments is taken as specular reflection from aligned facets.

Orientation spread around mean flake tilt angle is given as standard deviation σ' .

 σ' small

Parameter C contains pigments size and volume concentration.

C large

C small

Model fits well the measured reflectance spectra.

Influence of orientation's standard deviation

Influence of mean flake tilt angle

Smaller surface coverage, C, gives stronger substrate influence.

Influence of the substrate

C = 0.9

In conclusion

o Model incorporates 3 scattering parts.

o Model fits well the measured spectra.

 The influence of surface coverage, pigment orientation distribution and coating substrate on goniometric reflectance was analysed.

nina.rogelj@uef.fi

CIE76 colour difference and RMSE between measured and modelled reflectance values.

aspecular	CIE76	RMSE
angle		
-60°	20.58	0.3543
-30°	14.76	0.1702
-20°	12.32	0.1245
0°	17.64	0.0741
30°	26.29	0.0952
65°	26.27	0.1077

Numerical model

$$S = (F^{facet}G + F^{flake}G + F^{base})S_0$$

$$F^{\text{mod}el} = \frac{P}{4\cos\theta_i\cos\theta_r\cos\theta_n} M^{\text{mod}el}$$