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1.  Introduction and background

To meet the requirements of an increasingly specialised 
printing market, a large number of printed products 
are finished achieving various physical properties for 
optical as well as barrier characteristics. Main surface 
finishing techniques are lamination and varnishing, 
which one could summarise under the term ‘coating’. It 
is known that coatings can affect the colour appearance 
of print products due to a number of optical effects that 
occur on interfaces between coating layer(s), printed 
ink(s) and substrate. Important coating-related optical 
phenomena are scattering, reflection, absorption and 
refraction, which can significantly influence the visi-
ble or measurable reflection (Galić, Ljevak and Zjakić, 
2015). Modified colour appearances can be caused by 
multiple reflections between print and coating and/
or scattering depending on surface roughness. Also 
relevant in this regard is light trapping during colour 
measurements caused by coating-induced change of 

the distance between measurement device and colour 
patch. To visualise these colour shifts, Figure 1 shows 
scanned CMYK wedges whose lower half is coated 
manually with a glossy film. Differences in colour 
appearance can be seen between coated and uncoated 
colours. This effect is particularly apparent for medium 
area coverages.

Figure 1: Digital scan of UV offset CMYK wedges 
(printed in 80 l/cm AM screening), 13 patches per 

wedge in nominal tone values from 0 % to 100 %, the 
lower half of each wedge is coated with glossy film
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Abstract

To investigate two approaches for the prediction of spectral colour changes, UV offset-printed test charts were lam-
inated with polybutylene terephthalate films in three thicknesses and measured spectrophotometrically before and 
after lamination. This enabled the identification of the resulting colour shift for each patch. Mean colour deviations 
of 3.4 ∆E00 were determined while the strength of a colour shift depended on the initial colour patch lightness and 
the presence of paper white. To predict spectral reflections, a heuristic approach, based on the calculation of wave-
length-dependent transmission of the lamination, is presented. A mean accuracy of 1.44 ∆E00 between predictions 
and actual measured coated reflections was achieved. The method still shows potential for improvements in the 
prediction of the paper white after lamination. In a second approach, an artificial neural network (ANN) was applied 
to evaluate the performance of machine learning on this topic as well. After training and validation, using the ANN 
for spectral prediction led to a higher precision with a mean ∆E00 of 0.6. In conclusion, both approaches obtain useful 
results whereby the ANN predictions are significantly more accurate. The investigation also demonstrates the poten-
tial of machine learning in the field of print and media technologies in general and in colour science in particular.
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The colour change is attributed to a measurable 
coating-induced dot gain in many studies, i.e. by 
Gemeinhardt, Saba and Skoczowski (2009). It is also 
known that glossy coatings cause more saturated col-
our appearances while matte coatings result in more 
faded colours and decreased colour gamuts (Childers, 
et al., 2008). This can be attributed to the influence 
of surface reflected light on the measurements. In 
case of glossy surfaces, only a small quantity of these 
reflections reaches the sensor under 45°/0° geometry 
as opposed to matte coatings, where scattering leads 
to a larger amount of light reaching the sensor. Since 
surface reflections do not carry colour information of 
the print, the measured colours appear as mentioned  
(Gemeinhardt, Saba and Skoczowski, 2009).

Besides physical properties of coating materials, these 
optical phenomena are also affected by print spec-
ifications such as the substrate and screening used 
(Hoffstadt, 2004). In case of substrates containing opti-
cal brighteners, UV-absorbing coatings could attenuate 
the excitation of optical brighteners and, thus, their 
fluorescence emission. Applying UV-cured varnishes 
can also have a significant influence on colour appear-
ance due to their specific polymerisation-induced yel-
lowing properties. However, the two latter phenomena 
must be considered separately since they differ from 
the classic optical effects mentioned above. Any kind 
of reflection modification can naturally lead to visible 
and measurable colour deviations between the stand-
ard-conforming printing results and the finally coated 
products. 

Keeping processes controllable and results predicta-
ble is of fundamental importance in print productions. 
While the press operator still has influence on the final 
colour appearance in case of inline coatings, this option 
is not available for post-press coating. This resulted in 
the development of a variety of approaches to exam-
ine or predict coating-induced colour shifts. Those 
approaches relevant for the object of this paper will be 
presented briefly in the following. As a very practical 
tool for print productions, Fogra49 resp. Fogra50 intro-
duces special ICC profiles to generate coating proofs for 
matte and glossy OPP (oriented polypropylene) film 
laminations with regard to sheetfed offset (Kleeberg, 
et al., 2018). These proofs are intended to simulate only 
the final visual appearance to simplify colour commu-
nication in print productions. Galić, Ljevak and Zjakić 
(2015) focused on the characterisation of varnish-influ-
enced colour shifts on spot colours using different sub-
strates and found significant colour changes of ∆E00 > 2 
for all glossy UV-coated samples. Hoffstadt (2005) 
describes an approach using modified ICC profiles: for 
each coated patch, a colorimetric counterpart in the 
uncoated profile must be identified and both be con-
nected with modified gradation curves to predict the 

colour appearances for coated colour patches on this 
basis. By doing so, Hoffstadt reaches predictions with a 
mean accuracy from 1.5–1.7 ± 0.6 ∆E*94 compared to ini-
tial colour shifts ranged from 3.4–4.0 ± 1.2 mean ∆E*94 
for various glossy coatings. Hébert, Emmel and Hersch 
(2002) adapt existing reflectance models for the spe-
cific requirements of varnished metallic plates as a first 
step for further improved prediction methods. 

In our work, two new spectral-based approaches to 
predict lamination-induced colour shifts are presented. 
The first is a heuristic one, the second applies machine 
learning techniques. In addition, both approaches will 
be compared in terms of their attainable accuracy and 
practical potential. 

2.  Methods 

2.1  Sample preparation and measurement settings

To evaluate both approaches, adapted EFI Fiery pro-
filing charts IT8 i1IO with 936 patches (Figure 2) 
were printed with a Heidelberg Speedmaster 52-4+L 
UV Anicolor in 80 l/cm AM screening. Printing was 
done with Heidelberg Anicolor UV LM Process Inks in 
KCMY sequence on a glossy CHROMOLUX 700 215 g/m² 
substrate, which has a faint fluorescence emission of 
1.3 Δb00. The fluorescence emission is determined as 
the difference Δb* between M2 and M1 measurements, 
using a Konica Minolta FD-7 spectrodensitometer 
with D50 illuminant and 2° CIE standard observer. 
Lamination of the sample was implemented with poly-
butylene terephthalate (PBT) lamination film from 
the manufacturer Richter & Menzel in thicknesses of 
42 µm, 75 µm and 125 µm using an offline laboratory 
laminating device in operating temperature of 70 °C. 
Three samples were measured spectrophotometrically 
before and after lamination using a Konica Minolta 
FD-9 Auto Scan spectrophotometer in 45°/0° geome-
try, M1, D50 illuminant, 2° CIE standard observer, 10 Δλ 
(wavelength pitch), 3 mm measuring spot configura-
tion. Each patch was measured on 2 spots, and 4 times 
in total. For evaluation and comparison, the reflection 
spectra were converted to the CIELAB colour space 
and colour deviations were expressed in CIEDE2000 
(∆E00) (International Organization for Standardization 
/ International Commision on Illumination, 2014).

2.2  Heuristic approach

The heuristic approach calculates uncoated reflection 
spectra with the transmission of a lamination, which is 
also adjusted for corrected area coverages of each col-
our separation. It does not follow a physical model but 
takes into account some observations one could make 
based on Figure 1. One can see that the colour shift 
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depends on the presence of unprinted paper white. 
This is presumably caused by coloured back reflec-
tions which are mostly noticeable on paper white. For 
further improvement, the lamination’s specific surface 
reflection is added. In the following, the approach with 
its related calculations are presented, beginning with 
the necessary symbols.

R(λ) spectral reflection over 380–730 nm

ΔR(λ)surface difference in spectral surface reflection 
without colour information, measured 
at a dark colour patch

T(λ) spectral transmission over 380–730 nm

ACnom nominal area coverage, acquired from 
printing data for each colour separation 
of each patch

ACcorr calculated corrected area coverages for 
each colour separation of each patch

n exponent for adjustment of T(λ)

f, k parameters for fitting

Spectral transmission T(λ), the quotient of printed col-
ours and the blank substrate reflection gives the trans-
parency of the ink layer of each patch by Equation [1]:

𝑇𝑇 λ =
𝑅𝑅(𝜆𝜆)()*+,	./0)12/)*34

𝑅𝑅(𝜆𝜆)5.65*7)*3	./0)12/)*34
	 [1]

The sinus in Equations [2] to [5] represents the sinu-
soidal course of the dot gain as it is lowest at areas of 
small and high area coverages and highest in the range 
of medium area coverages. Therefore, Equation [6] 
considers the amount of paper white for each patch.

Corrected area coverage ACcorr must be calculated sep-
arately for each colour separation of each patch using 
Equations [2] to [5].

ACcorr,C =

𝐴𝐴𝐴𝐴#$%%,' = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐴𝐴𝐴𝐴0$1,' + 𝑓𝑓 ∙ sin π ∙ 𝐴𝐴𝐴𝐴0$1,'   [2]

ACcorr,M =

𝐴𝐴𝐴𝐴#$%%,' = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐴𝐴𝐴𝐴0$1,' + 𝑓𝑓 ∙ sin π ∙ 𝐴𝐴𝐴𝐴0$1,'   [3]

ACcorr,Y =

𝐴𝐴𝐴𝐴#$%%,' = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐴𝐴𝐴𝐴0$1,' + 𝑓𝑓 ∙ sin π ∙ 𝐴𝐴𝐴𝐴0$1,'   [4]

ACcorr,K =

𝐴𝐴𝐴𝐴#$%%,' = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝐴𝐴𝐴𝐴0$1,' + 𝑓𝑓 ∙ sin π ∙ 𝐴𝐴𝐴𝐴0$1,'   [5]

The exponent n, calculated by Equation [6], is for 
adjustment of T(λ) and refers to the calculation of cor-
rected area coverages ACcorr.

𝑛𝑛 = 𝑘𝑘 1 − 𝐴𝐴𝐶𝐶()**,, ∙ 1 − 𝐴𝐴𝐶𝐶()**,. ∙ 1 − 𝐴𝐴𝐶𝐶()**,/ ∙ 1 − 𝐴𝐴𝐶𝐶()**,0 	

𝑛𝑛 = 𝑘𝑘 1 − 𝐴𝐴𝐶𝐶()**,, ∙ 1 − 𝐴𝐴𝐶𝐶()**,. ∙ 1 − 𝐴𝐴𝐶𝐶()**,/ ∙ 1 − 𝐴𝐴𝐶𝐶()**,0 	 [6]

Figure 2: EFI profiling chart IT8 i1IO (originates from software EFI Fiery XF 6), 
936 randomised patches in 39 columns and 24 rows, patch size 7 mm × 9 mm, printed in 32 cm × 23 cm
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The ΔR(λ)surface represents the differences in surface 
reflection between coated and uncoated patches and 
is determined exemplarily for a dark colour patch by 
Equation [7]. As the surface reflected light did not pen-
etrate into the laminated sample but reflected directly 
without changes in spectral distribution from the sur-
face, it is assumed as being free of colour information.

Δ𝑅𝑅(𝜆𝜆)&'()*+, =
𝑅𝑅(𝜆𝜆).*/+0	'23*452*/,6
𝑅𝑅(𝜆𝜆).*/+0	3*452*/,6

	  [7]

Following the heuristic approach, the spectral reflec-
tion after lamination is calculated by Equation [8]:

R(λ)predicted =

𝑅𝑅(𝜆𝜆)%&'()*+'( = 𝑅𝑅(𝜆𝜆)-./01).0+'( ∙ 𝑇𝑇(𝜆𝜆)
4 + Δ𝑅𝑅(𝜆𝜆)7-&80*'	  [8]

The calculation method is set up in accordance with 
the equations with freely chosen start values for k and 
f and the resulting colour differences ΔE00 between 
R(λ)predicted and R(λ)laminated are calculated. Now, factors k 
and f must be fitted by minimising the mean ΔE00. In this 
work, fitting is done by using the MS Excel Solver with 
the Generalized Reduced Gradient – GRG nonlinear 
solving method. However, it would be just as feasible to 
use any other numerical-analysis software one is famil-
iar with. Once calculated for the specific print and lam-
ination parameters, k and f can be used to make further 
spectral predictions. To enhance evaluation, only 80 % 
of all colour patches (749 patches per chart) are con-
sidered for fitting while the remaining 187 ‘unknown’ 
patches of each chart are used as start and target data 
for predictions generated by both approaches to ena-

ble comparability. As the chart is already randomised, 
we simply take the desired number of patches starting 
at patch 1 (position 1A) line by line for each approach.

2.3  Artificial neural network approach 

An artificial neural network (ANN) was set up to 
realise and examine colour shift prediction applying 
machine learning techniques. Generally, ANNs can be 
understood as a technical implementation of machine 
learning within technologies of artificial intelligence. 
For the purpose of this paper, ANNs are seen as an 
existing tool for solving a specific task in research. As 
it is more important to describe the basic functional 
principle and the actual setup of the network used than 
to explain the technical and mathematical principles of 
ANNs in detail, which are widely described in relevant 
literature (Hagan, et al., 2014; Chollet, 2018), only a brief 
explanation of the ANN fundamentals is given here.

Figure 3 shows the schematic architecture of a fully 
connected multilayer feedforward network which con-
sists of three layers (input layer, hidden layer, output 
layer) with n number of nodes, the so-called ‘neurons’. 
Every neuron represents a single computing unit and, 
in case of fully connected networks, is connected to 
all previous and subsequent nodes by weighted con-
nections represented by matrices v and w. The num-
ber of input nodes must be chosen in accordance with 
the character of input data, the output nodes must 
comply with the output data. In this particular case, 
both the input and output have 36 nodes because the 
data sets consist of spectral data with 36 digits each 
(380–730 nm spectral range in 10 Δλ wavelength pitch). 
The hidden layer setting must be chosen and has some 

Figure 3: Schematic representation of a triple-layered artificial neural network with input x, 
hidden y and output layer z, weighted connections v and w and activation function f (Selle, 2018)
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influence on the learning and results quality. To apply 
an ANN to a specific task, it is necessary to first train 
it using known examples of the problem to be solved. 
The process used for the purposes of this paper was 
‘supervised learning’: by feeding the ANN with initial 
input data and related target data, it can learn that a 
specific input leads to a specific output.

Consequently, the training process requires sets of 
start and target data, which need to be split into sets 
of training (in this case: 70 %) and validation data 
(10 %). Furthermore, it is important to withhold test 
data (20 %) to ensure generalisation after training. 
Generalisation is the capability of a trained ANN to per-
form on unknown data from the same type as well as 
it does on the training data. On the other hand, mem-
orisation or overfitting means the exact opposite: the 
ANN only remembers specific training targets but fails 
on unknown samples. (Hagan, et al., 2014)

As the test charts are already randomised, all colours in 
different combination of area coverages were consid-
ered. The learning process involves the feed-forward 
data processing and the backpropagation mechanism 
for an automatic weight adjustment. During feed-for-
ward processing, the input data is processed through 
the network. For each neuron, its single input is calcu-
lated from all incoming values considering the weights. 
By a so-called ‘activation’ the input leads to a specific 
output which is processed to the subsequent nodes up 
to final outputs z1 to zm. (Chollet, 2018) 

The resulting output error at each node is calculated by 
comparison with the actual target data. Now, using the 
method of backpropagation, the errors are propagated 
backwards into the ANN and the weights are adjusted 
in an automated process to minimise the output loss 
for each node, starting with the output layer. The direc-
tion of weight modification is identified by using the 
gradient descent approach. Feed-forwarding the inputs 
and backpropagation of resulting errors with weight 
adjustments jointly form a so-called ‘epoch’.

The entire training routine usually consists of numer-
ous epochs to successively minimise the output losses. 
The learning rate defines the intensity of the weight 
adjustments whereas the batch size specifies the 
number of processed single data between two weight 
adjustments. To evaluate the ANN’s performance after 
training, the test data set can be used as input data for 
which the network should predict the corresponding 
target. 

The Python programming language is used to set up 
an ANN based on the Keras framework (version 2.2.4). 
Keras is a high-level API (application programming 
interface) for Googles TensorFlow backend (ver-

sion 1.12.0) and, as well as Python and all other soft-
ware components used for implementing the ANN, 
available as open source software. For detailed infor-
mation about possible functions and configurations, 
the authors refer to the relevant literature. (Hagan, et 
al., 2014; Chollet, 2018)

Besides a suitable data base and its proper preproc-
essing, the obtained performance of an ANN depends 
on actual realisation and task-specific adaption of all 
parameters (Chollet, 2018). The detailed setup and 
training configuration of the ANN used are summa-
rised in Table 1 and Table 2, respectively. Apart from 
the parameters listed in the tables, the default settings 
for the given Keras version are used.

Table 1: Setup of the Keras-based ANN

Parameter
Input 
layer

Hidden 
layer

Output 
layer

Nodes 36 18 36
Activation func. Hard sigmoid Softmax default

Table 2: The ANN training configuration 

Parameter Setup

Optimiser Adam
Loss function Mean square error
Learning rate 0.01
Epochs 2 000
Batch-size 2

3.  Results 

3.1  Short presentation of lamination-induced 
colour shifts

First, the obtained lamination-induced colour shifts are 
to be outlined. In the course of this paper, ‘colour shift’ 
means any modification in the spectral reflection. The 
findings presented in the following are always valid 
for all lamination thicknesses unless the contrary is 
noted. Looking at the spectral characteristics of coated 
and uncoated colours, significant lamination-induced 
colour shifts are revealed. Figure 4 exemplarily shows 
four spectral reflections of cyan in nominal area cov-
erages of 20, 60, 80, and 100 % (C100 = cyan in 100 % 
nominal area coverage) and their corresponding coated 
reflection spectra. The shown spectra were selected in 
order to show differences in solid and halftone printed 
colours. While C100 shows only slight deviations 
(0.9 ∆E00), the other patches show increasing colour 
shifts with increasing presence of blank paper white 
(0.9–4.0 ∆E00). 
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Since a rising presence of paper white is usually accom-
panied by an increasing brightness of a colour patch, a 
link between colour brightness and resulting colour 
shift can be assumed. 

To verify this, Figure 5 shows the L* values of an entire 
colour chart and resulting ∆E00 values after 42 µm 
lamination. It can be clearly seen that in areas of low 
lightness there is the smallest colour shift while it first 
increases at lighter colours and tends to have its spec-
tral maximum in areas of medium lightness. Figure 6 
shows changes in lightness between unlaminated and 
laminated colour patches, expressed in ∆L00. To obtain 
a clearly arranged diagram, both the L* and ∆L00 values 
were averaged in lightness intervals of 10 (arithmetic 
mean of all L* values between 100 and 90, etc.) and 
spline interpolated with curves using Python’s SciPy 
library with interp1d function. The curves correspond 
quite well with the scatter plot distribution in Figure 5. 

This indicates not only that the resulting colour shift 
depends on colour lightness, but also that it is mainly 
caused by changes in lightness due to lamination. 
Furthermore, significant differences in lightness modi-
fication between the thickest and the two thinner films 
can be seen for areas of medium and high reflections.

For CIE chroma and hue, no connection can be found 
between these colorimetric characteristics and colour 
shifts. It is also noted that the laminations do not affect 
the substrates fluorescence emission which still has a 
value of 1.3 ∆b00. In conclusion, lamination does result 
in a significant colour shift, the size of which is princi-
pally related to colour patch lightness, in other words, 
the presence of paper white. In the following section, it 
will be discussed whether the approaches mentioned 
above can make useful spectral predictions.

Figure 5: Relationship between lightness L* 
for 936 unlaminated colour patches 

and corresponding lamination-induced colour 
shifts in ∆E00 due to lamination with 42 µm PBT film
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Figure 4: Spectral colour shift due to lamination with a 42 µm PBT film, exemplarily shown 
for reflection spectra of cyan in nominal area coverages of 100, 80, 60 and 20 %, in two graphs for better clarity
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3.2  Spectral predictions by both approaches

As described in the Section 2, factors f and k must be 
fitted for each specific lamination to adjust the heu-
ristic approach. For fitting purposes, only 80 % of the 
data set (749 patches per chart) is considered – thus, 
predictions can be made for ‘new’ data. Table 3 shows 
the relevant fitting results for each lamination.

Table 3: Optimised correction factors f and k 
for each lamination

Lamination thickness 
[μm] f k

 42  6.60 0.46
 75  5.56 0.41
125 12.02 0.44

Next, selected spectral reflections with related predic-
tions will be shown to give an impression about the 
performance of both approaches. Figure 7 shows four 
reflection spectra of coated patches and the predicted 
reflections using the heuristic approach. Figure 8 pro-
vides the same scenario for the ANN. The nominal area 
coverages for each spectrum are indicated as well as 
the achieved prediction accuracy in ∆E00 while the 
specific numbering c1, c2, c3 is of no significance. With 
regard to Figure 7, the heuristic approach gives good 
results for colour spectra. Weaknesses become visible 
for the paper white prediction which does not differ 
from the measured uncoated spectrum and the calcula-
tion method seems to have no impact. In the interest of 
completeness, it is noted that no functional interrela-
tion between the colorimetric parameter lightness L*, 
hue h, chroma C* and the achieved prediction accura-
cies could be found during analysis. 

Figure 8: Laminated (l) and unlaminated (ul) reflection spectra for four patches 
(nominal area coverages expressed with C/M/Y/K in percent) with related spectral predictions (p) 

and their accuracies in ∆E00 by the neural network approach for 42 µm PBT lamination
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Predictions made by the ANN are quite close to the 
actual measured coated patches and show colour 
deviations of < 1 ∆E00. Averaged over all 561 predicted 
spectra, a mean prediction accuracy of 1.4 ∆E00 for the 
heuristic approach and 0.6 ∆E00 for the ANNs predic-
tion can be attained.

Table 4 presents relevant colorimetric data including 
initial colour shifts and prediction results for both 
methods. In addition to the arithmetic mean values, 
the 90th percentiles p are given to allow a further eval-
uation of the results. 

4.  Discussion

Significant colour shifts can be seen, which tend to 
have their maximum at colours of medium brightness. 
Among other optical effects, the colour shifts are pre-
sumably caused by interreflections between ink or 
paper white surface and lamination. In darker colours, 
the greater initial absorption and the absence of paper 
white leads to a smaller light potential for multiple 
reflections compared to middle-toned colours. This 
effect slightly reverses at colours of high brightness 
since they have only low absorptions and therefore 
multiple reflections have reduced impacts. Good pre-
diction results with mean colour deviations of < 2 ∆E00 

are demonstrated for both approaches. Looking at the 
heuristic approach (Figure 7), a poor prediction accu-
racy for paper white reflection spectra is revealed. 
The reason for this lies in the calculation method of 
this approach as the transmission T(λ) in Equation [8] 
for blank substrates is 1 due to the absence of ink. 
Therefore, the correcting exponent n is ineffective and 
a prediction is not possible. 

With mean accuracies of 0.6 ∆E00, the ANN shows 
spectral predictions with only slight deviations to the 
actual measured spectra, which are even hardly per-
ceivable for human observer. Here it should be men-
tioned that phenomena of overfitting can be ruled out 
since predictions were made for test data sets which 
are completely unknown to the ANN until then. The 
prediction of a numerical series, as it was done in the 
present case, basically means to solve a regression 

problem which is a common application for this kind of 
ANNs. Nevertheless, the accuracy achieved seems to be 
impressive in their own right. In the past, many phys-
ically reasonable models and associated colorimetric 
calculations were developed. Using an ANN is a funda-
mentally different way to calculate or converte colours 
as it does not rely on the current technical or physical 
backgrounds of phenomena but on training based on 
known examples. One does not need to comprehend 
a process with all its parameters entirely and yet can 
achieve useful results, as is demonstrated in this paper 
with nearly matching spectral predictions. Based on 
initial lamination-induced colour shifts and obtained 
prediction accuracies for different approaches found 
in literature (cf. the introduction) and in this paper, it 
seems conceivable that a suitable ANN provides better 
results than existing physically grounded mathemati-
cal models. This hypothesis requires further investiga-
tion to prove or disprove it. It must be clear, however, 
that good results can only be expected for the process 
parameters represented by the training data set. In 
this investigation, only one type of lamination was 
examined. Other lamination materials may have dif-
ferent refraction indices and transmission quantities 
and, therefore, other influences on colour appearance. 
Consequently, this ANN should be retrained with suit-
able training data to make predictions for other lami-
nation and print parameters.

Future work in this field could implement laminations 
with different parameters (e.g. refraction index, thick-
ness) as additional input channels in a multimodal 
ANN to find out if a generalised network for colour 
shift prediction is possible. As most computing work 
is needed for an ANN’s training, the actual utilisation 
of an already trained ANN has comparably low needs 
for computing power and provides instantaneous 
outcomes. The ANNs offer great potential for process 
improvement in a broad field of applications, including 
in print and media technologies – it should be easy for 
an expert reader to imagine other application cases. 
The availability and constant further development of 
machine learning environments and technologies also 
contribute to a practical implementation in e.g. colour 
science, colour management or quality control systems 
for dealing with existing and future problems. 

Table 4: Final results for both approaches: initial colour shifts and prediction accuracies in arithmetic mean x ̅ ∆E00 

and 90th percentile for the 187 ‘unknown’ patches of each lamination

Lamination 
(thickness) 
μm

Initial 
(uncoated to coated) 
x ̅ ∆E00  p = 0.9

Heuristic 
(coated to predicted) 
x ̅ ∆E00   p = 0.9

ANN 
(coated to predicted) 
x ̅ ∆E00   p = 0.9

 42 3.4 5.3 1.3 2.2 0.7 1.2
 75 3.4 5.2 1.3 2.1 0.5 0.8
125 3.6 5.3 1.7 2.6 0.7 1.3
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5.  Conclusions 

Notable lamination-induced colour shifts of 3.46 mean 
∆E00 were identified and spectrally predicted using 
two different approaches. The heuristic approach rep-
resented the lamination-induced effects on reflection 
spectra for colours quite well and made predictions 
with an accuracy of 1.43 mean ∆E00, but always requires 
the nominal area coverages. It can be concluded, how-
ever, that this approach still has potential for improve-
ments to enable not only prediction of colour, but also 
of paper white after lamination. The ANN performed 
equally well on average for all kind of spectra and 
provided an accuracy of 0.63 mean ∆E00 between pre-
dictions and actual measured spectra. The heuristic 
approach requires the fitting of only two variables 

whereas the ANN’s training with fitting of 2 592 varia-
bles (36 × 36 × 2) requires significantly more comput-
ing effort. However, once implemented and set up, both 
offer immediate predictions. For a further validation of 
both approaches and possible scenarios for implemen-
tation, future investigations should take different lami-
nation and print configurations into account – e.g. matte 
laminations, varnishes, other substrates and screenings 
as well. We have indications that the heuristic approach 
is applicable even with only a few tens of spectra for 
fitting, but this must be examined more closely in a 
future work. Another challenge is to establish and to 
train an ANN that is able to predict spectra for vari-
ous lamination and coating scenarios with only minor 
adjustments. In general, ANNs offer great potential for 
process improvement in a broad field of applications.  
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