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1.  Introduction and background

The mechanical stress–strain curve of paper is obvi-
ously affected by many factors, such as: the surface 
roughness, temperature, humidity as well as com-
pression speed, etc. The properties of paper have 
been studied in numerous papers. But until now, it is 
still very hard to build a unified model which can be 
perfectly used for paper or paper stack and consider 
all of these factors. According to different classifica-
tion criteria, the paper models can be classified into 
various groups. 

Depending on whether the surface topography is 
taken into account, the analysis models of paper can 
be divided into rough surface models and smooth 

solid models. Generally, the paper is modelled as 
smooth solid material; the ignorance of the surface 
roughness brings lots of convenience for analyzing 
the processes such as paper  delivery  and paper cal-
endering (Eckstein, 2014, p. 140). An analytical model 
was developed by Litvinov and Farnood (2010) for the 
compression of coated substrates in a soft rolling nip, 
in which, the substrate was represented by a modified 
solid element. The surface topographical differences 
between the cross direction and the machine direction 
for newspaper and paperboard were investigated by 
Alam, et al. (2011). When compressing thin sheets, it is 
very important to be aware of the influence of surface 
roughness (Rättö, 2005). The surface topography plays 
an important role in obtaining the stress–strain curve 
of paper materials; different methods of calculating the 
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contact area will lead to very different results (Chen, 
et al., 2016a). The influence of surface roughness was 
also discussed in some papers, for example, the paper 
surface topography under compression was studied by 
Teleman, et al. (2004). According to the surface topog-
raphy, the paper body was considered as being com-
posed of two rough surfaces and an internal structure 
(Schaffrath and Göttsching, 1991; Chen, Neumann and 
Dörsam, 2014), the force–deformation relationship of 
paper was derived by using the Newton formula. 

Based on the law of the essential physical characteris-
tic of materials, the models of paper materials can be 
divided into constitutive models (Ramasubramanian 
and Wang, 1999; Xia, Boyce and Parks, 2002; Stenberg, 
2003) and non-constitutive models. For the constitu-
tive models, the properties of paper such as elasticity, 
plasticity and viscosity were modelled by using spring, 
dry friction and dashpot elements, respectively (Agilar 
Ribeiro and Costa, 2007; Gavelin, 1949). According to 
those methods, the differences of these constitutive 
models mainly lie in the different combinations of 
these elements. A considerable number of free param-
eters have to be determined by doing experiments in 
these constitutive models. Moreover, most of these 
parameters are very difficult to be measured.

In addition, according to different research meth-
ods, the research of paper can also be classified as 
experimental, simulation or mathematical analy-
sis, etc. Four different experimental methods were 
evaluated for characterizing the smoothness of the 
handsheets (Singh, 2008; Nygårds, et al., 2005; Pino 
and Pladellorens, 2009). Some references (Mäkelä 
and Östlund, 2003; Ramasubramanian and Wang, 
2007; Nygårds, et al., 2005; Andersson, 2006, p. 73; 
Lavrykov, et al., 2012) attempted to establish the sim-
ulation model for paper and paperboard in finite 
element method (FEM) software. Creasing and fold-
ing of multiply paperboard were also simulated by 
Huang with co-workers (Huang and Nygårds, 2010; 
2012; Huang, Hagman and Nygårds 2014). Hill (1950) 
established Hill material with isotropic hardening. An 
anisotropic in-plane and out-of-plane elasto-plasto 
continuum model for paperboard consistent with the 
laws of thermodynamics was built by Borgqvist with 
co-workers, the creasing (Borgqvist, et al., 2015) and 
folding (Borgqvist, et al., 2016) operations were stud-
ied and compared to experimental results. In addition, 
an elastic-plastic model and the cohesive zone model 
(CZM) was proposed by Li, Reese and Simon (2017) to 
simulate the paperboard creasing process. Chen et al. 
(2015) proposed that the simulation of paper in the 
perpendicular to the in-plane direction can be solved 
by using the gasket model and avoiding the difficult 
measurements required for obtaining the parameters 
in previous models.

Compared to the in-plane dimensions, the thickness 
of paper material is very thin. It may sometimes be 
hard to imagine the use for an out-of-plane material 
model (Stenberg, 2002, p. 18). However, the mechanical 
behavior of paper has a very close relationship with 
many operations in the papermaking or printing indus-
tries, such as paper calendering, folding, creasing, tra-
ditional printing, and so on. The research on multiple 
sheets is also closely related to many applications, such 
as the operations of moving and organizing of paper 
in the pre-printing stage, paper cutting, book binding 
and paper counting in the post-printing process, and 
so on. Most of these examples have been described in 
Stenberg (2002, p. 18) in detail. In these examples, the 
importance of the out-of-plane behavior is enhanced. 

For multiple sheets, a characteristic equation for paper 
pile in exponential form was proposed by Pfeiffer 
(1981) and the K1 and K2 factors were measured for 
paper stacks. When the surface roughness of paper was 
taken into consideration (Schaffrath and Göttsching, 
1991), the force–deformation behavior of paper stack 
was investigated. Based on the model proposed by 
Schaffrath and Göttsching (1991), a theoretical formula 
was built for paper pile (Arango Diaz, Pfirrmann and 
Schmitt, 2009) to show the relationship between height 
and number of sheets; the force–deformation behavior 
of multiple sheets was also investigated (Chen, et al., 
2016b). However, the simulation work and the research 
about paper stacks are still not sufficient, and there-
fore should be one of the main research directions in 
the future.

According to the knowledge of the authors, the com-
pressive curve of paper material is a typical example 
of materials with J-shaped stress–strain curves, which 
is very similar to gasket and biomaterials (DoITPoMS, 
2004). The curve shows that initially, small increases 
in stress give large deformations, however, at larger 
deformations the material becomes stiffer and more 
difficult to be compressed. A mathematical description 
model for spiral wound gasket was proposed by Takaki 
and Fukuoka (2000), then the stress–strain relation 
for asbestos sheet gasket was proposed by Takaki and 
Fukuoka (2001) in the same way. After that, these mod-
els were widely used for calculating the stress–strain 
curve of gasket materials (Takaki and Fukuoka, 2002a, 
2002b, 2003; Nagata, Shoji and Sawa, 2002; Fukuoka 
and Takaki, 2003; Fukuoka, et. al., 2007; Fukuoka, 
Nomura and Nishikawa, 2012), especially, for the FEM 
calculation of gasket materials. The same method was 
used in this paper for establishing the empirical model 
for paper materials.

The aim of this study is to establish the empirical model 
and actualize the description of the stress–strain curve 
of paper sheet under the out-of-plane compression. 
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By establishing the empirical model, the stress–strain 
behavior of paper under different compressive forces 
in the through-thickness direction will be deeply inves-
tigated. Based on the stress–strain relation, the model 
for describing the force–deformation curve of paper 
stacks will also be derived. Finally, a comparison of the 
modelling results will be carried out with the experi-
mental data.

2.  Materials and methods

2.1  Theoretical basis

The stress–strain curve of paper consists of two parts: 
the curve under loading condition and the curve under 
unloading condition. Because of the plasticity of the 
paper material, the analysis of the unloading curve 
is much more complicated than the loading curve, 
but anyway, both can be described by using curve fit-
ting methods. Generally, the description models for 
J-shaped materials can be divided into linear and non-
linear models. 

For the compression behavior of gasket material, 
Nagata, Shoji and Sawa (2002) proposed a simplified 
linear model, in which the nonlinearity of the gasket 
stress–strain relation was approximated by two elastic 
moduli in loading and unloading stages, respectively. 
The comparison of computing results between the 
simplified linear model and the nonlinear model was 
also provided. For the analysis of gasket stress distri-
bution in bolted flange joints, the result of this simpli-
fied model gives a good agreement with the result of 
nonlinear model.

Figure 1: Typical stress–strain curve of paper shown 
in green color; the black dotted line is the simplified 

linear stress–strain curve of paper modelled
with two elastic springs

The material behavior of paper in the out-of-plane 
direction (z-direction, ZD) can also be modelled with 
two linear springs (as shown in Figure 1), which pro-

vides convenient analysis of processes such as paper 
delivery and paper calendering (Eckstein, 2014, p. 140). 
As mentioned previously, a characteristic equation for 
paper pile in exponential form was proposed by Pfeiffer 
(1981), both of the stress–strain curves in loading and 
unloading stages were expressed by using exponential 
functions with coefficients of K1 and K2. 

In this paper, a polynomial function and a modified 
exponential function are used respectively for describ-
ing the stress–strain curve of paper on the loading con-
dition and the unloading condition. 

2.2  Numerical analysis

According to the model proposed by Takaki and 
Fukuoka (2000), the stress–strain curve of spiral 
wound gasket in the loading process can be described 
by using the sextic polynomial function:

𝜎𝜎 = 𝑎𝑎! + 𝑎𝑎" ∙ 𝜀𝜀 + 𝑎𝑎# ∙ 𝜀𝜀# + 𝑎𝑎$ ∙ 𝜀𝜀$ 

+	𝑎𝑎% ∙ 𝜀𝜀% + 𝑎𝑎& ∙ 𝜀𝜀& + 𝑎𝑎' ∙ 𝜀𝜀'			[MPa] 

	 [1]

where σ and ε are the paper stress and strain, respec-
tively. The ai (i = 0, …, 6) are constant values for iden-
tifying the polynomial function. Generally, a0 = 0, but 
before the loading process, a preload is put on the 
specimen, so the corresponding value of a0 is not 0.

For the unloading curve, the stress–strain relation-
ship can be described by using the modified exponen-
tial function; the idea of constructing the model is to 
ensure that the established equation goes through the 
residual strain point (εr, 0):

𝜎𝜎 𝜎 𝜎𝜎 𝜎 exp(𝛽𝛽 𝛽 𝛽𝛽𝛽 𝛽 𝛽𝛽𝛽  exp(𝛽𝛽 𝛽 𝛽𝛽-	)				[MPa]	
	

	 [2]

where:

𝛽𝛽 𝛽 𝛽𝛽$ 𝜀𝜀&'( = a + b ∙ 𝜀𝜀&'( + c ∙ 𝜀𝜀&'(
$
.	

𝜀𝜀/ =𝑓𝑓 0 𝜀𝜀&'( = 𝑝𝑝 𝑝𝑝𝑝 &'( + 𝑞𝑞	

𝛼𝛼 𝛼𝛼𝛼 . 𝜀𝜀&'( =
𝜎𝜎&'(

exp 𝛽𝛽 𝛽𝛽𝛽 &'( − exp 𝛽𝛽 𝛽𝛽𝛽 /
	

	

	 [3]

In Equations [2] and [3], σ is the dependent variable 
and ε is the independent variable. The unloading curve 
is determined by the coefficients α and β. The σspu and 
εspu are the values of stress and strain at the start point 
of unloading, respectively. The value of σspu can be cal-
culated according to Equation [1]. The a, b and c are 
the constants for identifying the relationship between 
β and εspu. The p and q are the components of the equa-
tion between εr and εspu. All of the coefficients α, β and 
εr can be expressed as a function of the independent 
variable εspu.
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Furthermore, the relationship between force and 
deformation can be converted from the stress–strain 
relation by using the following equations:

𝐹𝐹 𝐹 𝐹𝐹 𝐹 𝐹𝐹 𝐹
𝑑𝑑'()
2

+

			[N]	
𝑧𝑧 𝑧 𝑧𝑧 𝑧𝑧𝑧 23(				[mm]	
	

	 [4]

where, F is the force imposed on the paper specimen 
and z is the deformation of paper under the corre-
sponding force F. The diameter of the cylindrical 
indenter is ddia. The average thickness of paper is dthi. 
According to Equations [1] to [4], the force–deforma-
tion relation of one sheet can be divided into two parts 
and expressed as:

𝐹𝐹",	%&'()*+ = 𝑎𝑎. ∙
𝑧𝑧",	%&'()*+
𝑑𝑑23)

.4

.	5	6

∙ 𝜋𝜋 𝜋
𝑑𝑑()'
2

9

			[N]	

𝐹𝐹",	=*%&'()*+ = 𝛼𝛼 𝛼 exp 𝛽𝛽 𝛽
𝑧𝑧",	=*%&'()*+

𝑑𝑑23)
− 𝛼𝛼 𝛼 exp 𝛽𝛽 𝛽 𝛽𝛽E 	

∙ 𝜋𝜋 𝜋
𝑑𝑑()'
2

9

			 N 	

	

	
[5]

 
in which, F1, loading and F1, unloading are the forces in the load-
ing stage and unloading stage, respectively, z1, loading and 
z1, unloading are the corresponding deformations, the sub-
script 1 corresponds to 1 sheet.

For multiple sheets, it is assumed that when the force 
is the same, the deformations of the paper stack zn, loading 
and zn, unloading are directly proportional to the number 
of sheets n. On the basis of this assumption, the force–
deformation relation can be expressed as:

𝑧𝑧"#$%&'() = 𝑘𝑘"#$%&'( ∙ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	
	
𝑧𝑧2'"#$%&'(3 = 𝑘𝑘2'"#$%&'( ∙ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	
	

	 [6]

In Equation [6], kloading and kunloading are the slopes in the 
loading and unloading conditions, respectively, which 
are used for showing the relationship between defor-
mation and number of paper sheets. 

The values of kloading and kunloading depend on the inde-
pendent variable forces; when force changes, the val-
ues of kloading and kunloading also change. The relationship 
between the slope and force can be expressed as the 
following equations:

𝑘𝑘"#$%&'( = 𝑓𝑓+ 𝐹𝐹"#$%&'(- 	
	
𝑘𝑘.'"#$%&'( = 𝑓𝑓/ 𝐹𝐹.'"#$%&'(- 	

	 [7]

According to Equations [6] and [7], the force–deforma-
tion relation model of one sheet derived in Equation [5] 
can be extended to multiple sheets:

𝑧𝑧",	%&'()*+ = 𝑓𝑓. 𝐹𝐹0,	%&'()*+ ∙ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	

𝐹𝐹",	%&'()*+ = 𝐹𝐹0,	%&'()*+			[N]	

𝑧𝑧",	7*%&'()*+ = 𝑓𝑓8 𝐹𝐹0,	%&'()*+ ∙ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	

𝐹𝐹",	7*%&'()*+ = 𝐹𝐹0,	7*%&'()*+			[N]	

	

	 [8]

where Fn, loading and Fn, unloading are the forces applied to 
paper stack in the loading and unloading condition, 
respectively. For a better understanding, the force–
deformation relation of multiple sheets can also be 
expressed as the converse equation of Equation [8]:

𝐹𝐹!,	$%&'(!) = 𝑓𝑓*+, $
-!,	$%&'(!)

.
%			[N]	

	
𝐹𝐹!,	/!$%&'(!) = 𝑓𝑓0+, $

-!,	*!$%&'(!)
.

%			[N]	
	

	 [9]

2.3  Material and experimental setup

The paper used here for verifying the proposed model 
is the copy paper (Copy paper, DIN A4, 210 × 297 mm, 
80 g/m2), produced by the Steinbeis Paper GmbH in the 
year 2013. The actual average thickness is d = 84.7 μm. 

The measurements were performed on the universal 
testing machine Zwick Z050, which can be utilized 
for strain, shear and bending tests with different sub-
strates and machine components with high accuracy 
of the cross head speed (0.0005–2 000 mm/min), and 
position repetition accuracy (± 2 μm). The compression 
equipment is shown in Figure 2, which was designed 
by Kaulitz (2009, p. 179). 

Figure 2: Test equipment for obtaining the force–
deformation curve of the paper constructed by Kaulitz 
(Kaulitz, 2009, p. 179); the diameter of the cylindrical 

indenter (pressure head) is 6 mm
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To eliminate the effect of climate conditions of the envi-
ronment on the mechanical force–deformation behav-
ior, the experimental studies were performed under 
standardized climatic conditions. The climate is speci-
fied in DIN 50014 and prescribed a range of 23 ± 0.5 °C 
for the temperature and a range of 50 ± 1.5 % for the rel-
ative humidity (Deutsche Institut für Normung, 2018).

Figure 3: Schematic of the applied speed and force 
in loading cycle; (a) shows the changes of speed 

in a complete cycle, negative value means 
the speed is opposite to ZD direction, see Figure 2, 

(b) shows the corresponding forces; 
the strain rate is about 0.01

Figure 3 shows the settings of the loading speed and 
the corresponding force. At the beginning of the load-
ing condition, the cylindrical indenter moves down 
from the original position at the speed of 20 mm/min, 
until the indenter comes into contact with the surface 
of the paper. The preload here is set to 1 N; when the 
change of force is 1 N, the compression process will 
begin with a velocity of 0.05 mm/min. After the force 
reaches the desired maximum force, the indenter will 
move up at the speed of 0.05 mm/min. When the force 
decreases to 1 N, the indenter returns back to the orig-
inal position at the speed of 20 mm/min. The average 
thickness of paper is d = 84.7 μm, so, both in the load-
ing and unloading process, the strain rate is equal to 
the loading speed divided by the thickness of paper; 
the value is about 0.01.

According to the size of the indenter (the diameter of 
the indenter is 6 mm) and paper thickness, the force–
deformation curve can be easily transferred into the 
stress–strain curve by using Equation [4].

The obtained data of experiments can also be used for 
establishing the descriptive model for paper materials 
and comparing its results with the calculation results 
under different forces.

3.  Results

3.1  Summary of the model for one sheet

For the loading process of one sheet, the stress–strain 
curve can be described by using the curve fitting 
method, by which, a set of experimental force–defor-
mation data were needed. With the aid of suitable 
software, such as Matlab (Matlab Help, 2013), the con-
stants which are used for identifying the loading curve 
of paper can be calculated automatically according to 
Equation [1]. All values of ai coefficients are shown in 
Figure 4.

Figure 4: Stress–strain curve of paper in the loading 
condition; the blue curve is the experimental curve, 

the red one is the fitting curve by using 
the polynomial function; 

the coefficient of determination: R2 = 1.0

From Figure 4, it can be seen that the stress–strain 
curve of paper in the loading stage can be described by 
using the polynomial function. The stress–strain curve 
under any desired strain can be obtained by the follow-
ing identified equation. 

𝜎𝜎 𝜎 𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎𝜎𝜎10, ∙𝜀𝜀 ,	

−	7.0×10, ∙𝜀𝜀 / + 6.9×10/ ∙𝜀𝜀 2	

−	2.4×102 ∙𝜀𝜀 5 + 2.7×102 ∙𝜀𝜀 6			[MPa]	

	

	 [10]

For the unloading process, the model is built accord-
ing to Equations [2] and [3]. There are three unknown 
variables, α, β and εr; the different values of εr under 
different forces can be directly obtained from the 
experimental data. Two more groups of point coordi-
nates, (εspu, σspu) and (εm, σm), are selected for calculat-
ing the coefficients α and β. As shown in Figure 5, εspu 
and σspu are the strain and stress values at the start 
point of unloading. The point (εr, 0) represents the 
residual strain. The (εm, σm) is a random point selected 
in the unloading curve. With the help of these points, 
the values of α and β can be easily calculated.
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Strain, ε (−) 
Figure 5: Selected points in the unloading stress–strain 

curve for calculating the components identifying the 
unloading function

3.2  Relationship between coefficient β 
and strain εspu

As mentioned above, three groups of point coordinates 
are needed for calculating the values of α and β. For 
instance, when the maximum force applied on the 
paper is 80 N, the value of εr can be obtained from the 
experiment. Then combined with the values at the start 
point of unloading (εspu, σspu) and the random point (εm, 
σm), the value of β can be calculated. The final calcula-
tion result of β under 80 N is 35.73. Other values of β 
can be calculated in the same way and the results are 
listed in Table 1.

Table 1: Values of εspu and β under different forces

Force (N) εspu (–) β (–)

  20 0.0502 64.52
  40 0.0880 43.03
  80 0.1222 35.73
120 0.1547 25.97
200 0.2019 22.04
400 0.2904 14.36

According to the data obtained in Table 1, it can be 
observed that the values of β are decreasing with the 
increasing of εspu values; these discrete points have 
been plotted in the following coordinates in Figure 6.

As shown in Figure 6, the coefficient β is regarded as 
a dependent variable, which changes with the inde-
pendent variable εy; the relation between them can be 
expressed by the following function:

𝛽𝛽 𝛽 𝛽𝛽$ 𝜀𝜀&'( = 206.64 + 339.76 ∙ 𝜀𝜀&'(	

− 432.03 ∙ 𝜀𝜀&'(
$
6

	 [11]

εspu (−)

Figure 6: Relationship between the coefficients β 
and εspu; the discrete points are the points 

listed in Table 1, the red curve is calculated 
by using the curve fitting method

The function above consists of two parts: a linear 
polynomial function and a radical function. Here, the 
coefficients provided in Equation [3] are: a = 206.64, 
b = 339.76 and c = 432.03. The coefficient of determina-
tion is R2 = 0.994. This function can also be expressed 
by using other functions, for example, the exponential 
function. The comparison between them will be imple-
mented in the discussion chapter.

3.3  Relationship between strains εr and εspu

As mentioned previously, (εspu, σspu) represents the 
start point of unloading and (εr, 0) is the residual strain 
point. The values of εspu and εr can be directly obtained 
from the experimental data. The values under different 
forces are listed in Table 2.

Table 2: Values of εspu and εr under different forces, 
which have been obtained according to the 

experimental results

Force (N) εspu (–) εr (–)

  20 0.0502 0.0024
  40 0.0880 0.0159
  80 0.1222 0.0272
120 0.1547 0.0460
200 0.2019 0.0756
400 0.2904 0.1216

On the basis of the data listed in Table 2, it can be seen 
that the values of εr are increasing with the increas-
ing of εspu values; these discrete points were plotted 
in Figure 7. The values of εspu and εr are regarded as 
abscissa and ordinate, respectively.

From Figure 7, it can be seen that the relationship 
between εr and εspu is linear. By using the linear curve 
fitting method, the relationship between residual 
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strain εr and the corresponding unloading strain εspu 
can be expressed as:

𝜀𝜀" = 𝑓𝑓% 𝜀𝜀&'( = 0.49 ∙ 𝜀𝜀&'( − 0.027	

	

	

	 [12]

Figure 7: Relationship between the maximum strain 
and the residual strain; the red curve is calculated 

by using the linear curve fitting method

The coefficients of linear relation proposed in Equa-
tion  [3] are: p  =  0.49, q  =  −0.027. The coefficient of 
determination is R2 = 0.990.

3.4  Relationship between coefficient α 
and strain εspu

According to Equation [3], the value of α is determined 
by the values of β and εr; the value of β can be calculated 
by using Equation [11], the value of εr is expressed as 
Equation [12]. The final function of α can be expressed 
as follows:

𝛼𝛼 𝛼 𝛼𝛼$ 𝜀𝜀&'( =
𝜀𝜀&'(

exp 𝛽𝛽 𝛽 𝛽𝛽&'( − exp 𝛽𝛽 𝛽 𝛽𝛽/
	

	

	

	 [13] 

3.5  Relationship between kloading and Floading

For multiple sheets, the description model was con-
structed on the assumption that when the force is 
the same, the deformation of paper stack (zn, loading and 
zn, unloading) is proportional to the number of sheets n. 
This hypothesis was verified by the experimental data.

It can be seen from Figure 8 that, when the force is 
100  N, the deformation of paper stacks at the start 
points of unloading shows a perfectly linear relation-
ship with the sheet numbers.

For the curve fitting function, the coefficient of deter-
mination is R2 = 0.999. For other forces, the experi-
mental result is shown in Figure 9; the curve indicates 
linear relationship between deformation and sheet 
number.

Figure 8: Deformation of different paper stacks under 
the same force; the force applied here is 100 N, the red 

curve is the linear curve fitting result

Figure 9: Experimental deformation of paper stacks 
under different loading forces

For different number of sheets, the statistical deforma-
tion value under different forces has been plotted in 
Figure 9, from which we can see the linear relationship 
between deformation and sheet number under differ-
ent forces. The values of the slopes can be calculated 
and the values of forces and slopes are listed in Table 3.

Table 3: The values of kloading under seven groups of 
different loading forces

Group Floading (N) kloading (–)

1   5 0.0036
2   10 0.0050
3   20 0.0065
4   40 0.0082
5   60 0.0093
6   80 0.0100
7 100 0.0110

According to the listed slope values (kloading) in Table 3, 
the values of slopes and forces were plotted in the same 
coordinate system; the value of Floading is regarded as 
the abscissa. The value of kloading is regarded as the ordi-
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nate. Then, the values of the slopes can be expressed as 
the function of forces. 

Figure 10 displays that the value of kloading is chang-
ing with force; the relationship between them can be 
approximated by using different functions.

Force, Floading (N)

Figure 10: Relationship between the slopes and the 
forces in the loading condition; the discrete blue points 
are the values of kloading under different forces, the red 

curve is the approximation curve

A radical function was used here for describing the 
relationship between slope and force. The coefficient of 
the function can be calculated by using the curve fitting 
method. The coefficient of determination is R2 = 0.997.

𝑧𝑧",	%&'()*+ = 2.29×1034 ∙ 𝐹𝐹",	%&'()*+
7
4 ∙ 𝑛𝑛𝑛𝑛𝑛𝑛mm]	

	

  [14]

3.6  Relationship between kunloading and Funloading

The same as in the loading stage, for different forces, 
the slopes in the unloading stage are also constant val-
ues, which can be seen in Figure 11. However, because 
of the plasticity of the paper materials, a part of the 
deformation of paper in the unloading process cannot 
be recovered to the original shape, which is a non- 
reversible change of shape in response to applied force.

Figure 11: Experimental deformation of paper stacks 
under different unloading forces

The non-recoverable part shown in the force–defor-
mation curve is called the residual deformation. The 
corresponding strain shown in the stress–strain curve 
is called the residual strain, which is shown in Figure 1 
and Figure 5. Thus, in the unloading stage, when the 
force is decreasing to 0  N, the deformation of paper 
stacks cannot recover to 0 mm. But for simplifying the 
model, the influence from the residual deformation is 
ignored.

And the same, for different sheets, when the force is 
the same, the total deformation is directly proportional 
to the number of sheets; the values of the slopes under 
different groups of forces are shown in Table 4. 

Table 4: The values of kunloading under seven groups of 
different loading forces

Group Funloading (N) kunloading (–)

1   5 0.0063
2   10 0.0076
3   20 0.0087
4   40 0.0098
5   60 0.0100
6   80 0.0110
7 100 0.0110

The values of slopes and forces listed in Table 4 are 
plotted in the same coordinate system; the values of 
Funloading and kunloading are regarded as the horizontal and 
ordinate axis, respectively. By using the curve fitting 
method, the values of the slopes can be expressed as 
the function of forces. The relation between kunloading 
and Funloading can be calculated according to the obtained 
function in Figure 12. The coefficients of the function 
are calculated by using the curve fitting method. Two 
radical functions are used for describing the relation-
ship between slope and force. As mentioned above, the 
influence of the residual deformation is ignored; the 
values of slopes are regarded as changing from 0.

Figure 12: Relationship between the slopes and the 
forces in the unloading condition, the discrete blue 

points are the values of kunloading under Funloading, 
the red curve is the fitting curve
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The function of the unloading deformation can be 
expressed as: 

𝑧𝑧",	%&'()*+&, = −1.61×1045 ∙ 𝐹𝐹",	%&'()*+&,

8
9	

+	5.83×1045 ∙ 𝐹𝐹",	%&'()*+&,

8
5 ∙ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	

	

    [15]

The coefficient of determination is R2 = 0.988.

3.7  Final calculation model

The stress–strain relation of one sheet can be expressed 
by Equations [1] to [3] and [10] to [13]. The force–defor-
mation relation of paper stack can be expressed by 
Equations [4] to [9] and [14] and [15].

3.8  Comparisons between the experimental data 
and the empirical results

In order to verify the applicability of the proposed 
model, some experiments on paper by using different 
maximum compression forces were performed; their 
results are shown in Figure 13. In the experimental pro-
cess, the provided maximum forces were 20 N, 60 N, 
80 N and 120 N.

Figure 13: Comparisons between the experimental 
and empirical stress–strain curves of one sheet; 

the blue curves are the experimental results, 
the red curves were calculated by using the empirical 

model, using Equations [1] to[3] and [10] to [13]

Figure 13 shows the comparisons between the experi-
mental and the calculated stress–strain curve of paper. 
The empirical and experimental results fit fairly well. 
The results show that this description model is capable 
of capturing the stress–strain behavior of paper at a 
wide range of strains. 

Figure 14: Comparisons between the experimental and 
empirical force–deformation curves of paper stacks; the 

blue curves are the experimental force–deformation 
data, the red curves were calculated by using the 

empirical model, Equations [4] to [9] and [14] and [15]

As shown in Figure 14, some experiments of multiple 
sheets (1, 4, 8, 12, 16, 20, 24, 32, 48, 72 sheets) with max-
imum force of 100 N were implemented. Comparison 
of the experimental results with empirical calculated 
results is shown in this figure. The deformations of 
paper stacks under the maximum force were selected 
for calculating the deviation.

The deviations for different numbers of sheets are 
listed in Table 5, with the largest values for 4, 16 and 
24 sheets, but still within ±5 %. The model calculations 
give good fits to the experimental results. 

Table 5: Comparisons of the force–deformation curves 
of paper pile between the experimental and empirical 
results, which is based on the deformation at the start 

point of unloading

Number 
of sheets

Deformation at the start 
point of unloading (mm) Deviation 

(%)Experimental 
result

Empirical 
result

  4 0.042 0.044 −4.76
  8 0.085 0.087 −2.35
12 0.130 0.131 −0.76
16 0.167 0.175 −4.79
20 0.216 0.219 −1.39
24 0.251 0.262 −4.38
32 0.352 0.350 +0.57
48 0.527 0.525 +0.38
72 0.778 0.787 −1.16
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4.  Discussion

4.1  Discussion about the stress–strain relation 
of one sheet

The loading process can be described by using not only 
polynomial function, but also exponential function 
defined in Equation [16] (Figure 15). The comparisons 
between them are discussed here.

Figure 15: Stress–strain curve of paper in the loading 
stage; the blue curve is the experimental result, the red 

curve is calculated by using the exponential function

𝜎𝜎 𝜎 𝜎𝜎$ ∙ exp 𝑞𝑞$ ∙ 𝜀𝜀 − 1 			[MPa]	

	

	

	 [16]

where p1 and q1 are the coefficients for determining the 
loading exponential function, which can be calculated 
by using the curve fitting method; the result is shown 
in Equation [17]. The coefficient of determination is 
R2 = 0.998.

𝜎𝜎"#$ = 0.6357 ∙ exp 13.5392 ∙ 𝜀𝜀"#$ − 1 			[MPa]	

	

	

  [17]

In addition, the relationship between the coefficient β 
and unloading strain εspu, shown in Figure 16, can also 
be expressed by the exponential function.

Figure 16: Relationship between the coefficients β and 
εspu. The discrete points are the points listed in Table 1, 
the red curve is the curve of the exponential function 

calculated by using the curve fitting method

The new function for β can be expressed as:

𝛽𝛽 𝛽 𝛽𝛽$ ∙ exp 𝑞𝑞$ ∙ 𝜀𝜀+,- + 𝑐𝑐$	

	

	

	 [18]

where p2, q2 and c2 are the coefficients for determining 
the unloading exponential function; the result is shown 
in Equation [19]. The coefficient of determination is 
R2 = 0.996.

𝛽𝛽 𝛽 94.3930 ∙ exp −11.9827 ∙ 𝜀𝜀234 + 12.2313	

	

	

  [19]

When describing both the loading curve and the coef-
ficient β using the exponential function, the stress–
strain relation of paper can also be expressed by 
Equations [2] and [16] with coefficients described by 
Equations [12], [13], [17] and [19]. 

The calculation results were validated again by com-
paring with the experimental results.

Figure 17: Comparisons between the experimental and 
the modified empirical stress–strain curves of paper, 

calculated by Equations [2], [12], [13], [16], [17] and [19]

As shown in Figure 17, the comparison results show 
that both of these two methods can be used for cal-
culating the out-of-plane stress–strain relationship 
of paper materials; however, the fit with the former 
method is better (Figure 13). The calculated results 
based on polynomial function and exponential func-
tions are compared in Figure 18.

It can be seen from Figure 18 that the difference 
between the results calculated based on the polyno-
mial function and the exponential function is relatively 
small. Both of them can be used for calculating the 
stress–strain curve of a single sheet. Only when the 
stress is bigger than 4 MPa, the difference between the 
two curves increases.
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Figure 18: Comparisons of the results calculated based 
on polynomial function and exponential functions; 

the red curves are the results based on the exponential 
function (see Figure 17), the dashed black curves are 

the results based on the polynomial function, which are 
the red lines in Figure 13; the nominal area of the 
indenter is about 28.27 mm2, a pressure of 3.5 MPa 

corresponds to about 100 N

4.2  Discussion about the force–deformation 
relation of multiple sheets

The described model can be used for calculating the 
force–deformation curve of multiple sheets. But for 
more sheets, the maximum number of sheets which 
can be calculated based on this model should be fur-
ther investigated. In the following, we will discuss 
about the upper limit value of this model. More exper-
iments were implemented to compare with the calcu-
lated results. The numbers of selected sheets are 72, 
80, 90, 100, 110, 120, 130, 140 and 150. The comparative 
results between the experiment and calculation are 
shown in Figure 19.

Figure 19: Comparisons of the experimental and 
empirical force–deformation curves of paper pile; the 
blue curves are the experimental data, the red curves 
are the force–deformation curves calculated by using 

the identified Equations [4] to [9] and [14] and [15]

From Figure 19 and Table 6, it can be seen that when the 
imposed force on the paper pile is 100 N, the maximum 
number of sheets which can be calculated by using this 
model is around 130 sheets. For further increasing the 
number of sheets, the deviation is increasing. 

Table 6: Comparison of the force–deformation curves of 
paper pile between the experimental and empirical 

results, which is based on the deformation at the start 
point of unloading

Number 
of sheets

Deformation at the start 
point of unloading (mm) Deviation 

(%)Experimental 
result

Empirical 
result

  72 0.78 0.79 −1.28
  80 0.88 0.87 +1.14
  90 1.00 0.98 +2.00
100 1.09 1.09   0.00
110 1.19 1.20 −0.84
120 1.30 1.31 −0.77
130 1.40 1.42 −1.43
140 1.44 1.52 −5.56
150 1.51 1.64 −8.60

In Table 6, the deviation of the deformation at the start-
ing point of unloading has been calculated. According 
to Table 6, for paper piles with less than 130 sheets, 
the deviation between the experimental result and 
empirical result is smaller than 2.0  %, but when the 
number of sheets is 140, the deviation is increasing to 
about 5.6 %. 

Based on the conclusion obtained above, we can 
redraw Figure 9 for more sheets and more forces; the 
new result is shown in Figure 20.

Figure 20: Experimental deformation of paper stacks 
under different loading forces

Figure 20 shows that when the sheet number is smaller 
than 130, the slopes of all curves are approximately 
constant values. But when the number of sheets is 
more than 130, the slopes will change to another con-
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stant values. This figure can also prove that 130 sheets 
is a turning point. When compressing paper stacks, 
what happens when the sheet number exceeds 130, it 
will be another interesting research subject. But as a 
speculation, the authors think that with increasing the 
sheet number, the stress really imposed on the paper 
lying in the lower layer is dispersed. When the number 
is more than 130, the remaining part of stack (the part 
more than 130) probably will not be affected by the 
force (or pressure). The maximum force imposed here 
is 100 N; if the force imposed on paper stack is bigger, 
the maximum number of sheets that can be calculated 
with the proposed model will be further extended.

5.  Conclusions

The mechanical behavior of paper and paper stack in 
the out-of-plane direction was deeply investigated in 
the presented study. Three main aspects of mechanical 
behavior of paper and paper stacks were completed, 
which can be summarized as follows.

Firstly, the stress–strain description model of one sheet 
was established and the stress–strain curves of paper 
under some desired strains were obtained; the com-
parison between the experimental result and the cal-
culation result shows the practicability of this model.

Secondly, the stress–strain model of one sheet can per-
fectly be extended to calculate the force–deformation 
behavior of paper stacks. This aspect is based on the 
assumption of direct relationship between the sheet 
number and deformation of paper stacks at same force. 
The verification result under 100  N shows that the 
maximum number of sheets which can be calculated 
by this model is around 130 sheets. For other forces, 
the force–deformation relationship in the loading stage 
can be calculated by using this model, but because of 
the deviation of the curve fitting methods, the accuracy 
of the unloading calculation is not enough. 

Thirdly, the model proposed for one sheet can probably 
be extended to some other materials (other copy paper, 
newsprint, paperboard, etc.) with J-shaped force–
deformation curves. Some specific studies related to 
mechanical behavior in out-of-plane direction can be 
carried out according to this method. However, com-
pared to the thickness of paperboard, paper is much 
thinner and the structure of paper and paperboard 
is also very different, which lead to some differences 
between the studies of paper and paperboard.

Not all models which can be used for paperboard 
can also be well used for thin papers, and vice versa. 
Therefore, the applicability of the presented model to 
other materials has to be verified.
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List of Abbreviations

ai (i = 0, ..., 6)	coefficients of the polynomial loading function
a, b, c	 coefficients of the equation between β and εspu

ddia	 diameter of the indenter
dthi	 thickness of the paper
F	 force
Floading	 force applied in the loading stage
Funloading	 force applied in the unloading stage
F1, loading	 force applied to one sheet in the loading stage
F1, unloading	 force applied to one sheet in the unloading stage
Fn, loading	 force applied to n sheets in the loading stage
Fn, unloading	 force applied to n sheets in the unloading stage
kloading	 slope in loading stage used for showing the relationship between deformation and number of paper stacks
kunloading	 slope in unloading stage used for showing the relationship between deformation and number of paper stacks
n	 number of sheets
p, q	 coefficients of the equation between εr and εspu

p1, q1	 coefficients of the modified loading function
p2, q2, c2	 coefficients of the new equation between β and εspu

z	 total deformation
z1, loading	 deformation of one sheet in the loading stage
z1, unloading	 deformation of one sheet in the unloading stage
zn, loading	 deformation of n sheets in the loading stage
zn, unloading	 deformation of n sheets in the unloading stage
α, β	 coefficients of the exponential unloading function
σ	 stress
σspu	 stress at the start point of unloading
ε	 strain
εr	 residual strain
εspu	 strain at the start point of unloading
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