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1.  Introduction

Image contrast is an important characteristic of image 
that largely contributes towards perceived image 
quality. In general image contrast is the ratio between 
darkest and lightest part of the image. Contrast sensi-
tivity has two major interpretations namely absolute 
and perceived contrast sensitivity. The former one is 
the minimum difference in luminance required for 
distinguishing between two intensities. The human 
eyes are not very sensitive to this and as a result very 
small difference may not be visible. The second one 
is more important as this is to which human eyes are 
sensitive. For instance, a bright object is more visible 
in a dark background than a bright one since the con-
trast between bright object and bright background is 
not enough for human eyes to distinguish. This phe-
nomenon is mathematically modeled using contrast 
sensitivity function. There are interpretations called 
global and local contrast as well. The global contrast 
is an overall ratio between luminance of dark and light 
region of entire image while local contrast is the distin-

guishability of different image regions in reference to 
the luminance of its local surrounding pixels. Contrast 
enhancement techniques focus on perceived and local 
contrast. Due to many reasons, such as insufficient 
illumination, noise during image acquisition, informa-
tion loss during image transmission and limitation in 
sensing capability of the optical sensors, low contrast 
images are resulted. Low contrast not only results in 
visual unpleasantness but also limits performance of 
different image analysis tasks like edge extraction, 
feature extraction and object recognition. Image con-
trast enhancement therefore is a key research area 
(Jayaraman, Esakkirajan and Veerakumar, 2011; Maini 
and Aggarwal, 2010). 

The goal of image contrast enhancement is to recon-
struct the low contrast input image with new inten-
sity levels that keep informational symmetry with the 
original image. In the digital era histogram has evolved 
as a potential alternative to the gradation curves and 
differential operators of analog era. Histogram has 
several advantages as it provides intensity distribu-
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tion across the available intensity levels as a numeric 
array. Different statistical information of the images 
can thus be derived from histograms that are widely 
used for many image processing and transformation 
operations like image compression, segmentation, 
etc. It provides better control over different visual 
regions in the images, i.e. shadow, mid-tone and high-
light since it is a numerical array that provides clear 
brightness distribution across the local regions of the 
images.  For instance, a narrow histogram conveys the 
low contrast since the pixel values can vary only within 
few intensities and rest of the intensity levels remain 
unutilized. Histogram can provide better insight of the 
image information particularly using the probability 
density function (PDF) which can also convey the gra-
dient curve information when taken in the cumulative 
manner as cumulative PDF (CPDF). Being powerful and 
simple, histogram has become the obvious choice for 
many real-time applications of image reproduction and 
representation systems. Histogram equalization (HE) 
widens up the histogram of the input image across the 
available intensity levels since the histogram of low 
contrast images is found with narrow distribution.

The two broad categories of approaches towards con-
trast improvement are spatial intensity based and 
frequency-based approaches. Global histogram equal-
ization (GHE) (Arici, Dikbas and Altunbasak, 2009) 
is one of the classical techniques under former class 
that maps the existing intensity levels to new levels 
that are more apart from each other resulting in bet-
ter contrast. In GHE this is achieved probabilistically 
based on the CPDF of the image. The results of GHE 
frequently suffer from false contouring and artificial 
appearance. Many algorithms were proposed towards 
improvement over the conventional algorithm, for 
example brightness preserving bi-histogram equali-
zation (BBHE) (Kim, 1997), dual sub-image histogram 
equalization (DSIHE) (Wang, Chen and Zhang, 1999), 
dynamic histogram equalization (DHE) (Abdullah-
al-Wadud, et al., 2007), exact histogram specification 
(EHS) (Coltuc, Bolon and Chassery, 2006), etc.

Adaptive histogram equalization (AHE) is another 
paradigm reported in this domain which can result in 
better enhancement in case of unevenly illuminated 
low-contrast images. Contrast limited adaptive histo-
gram equalization (CLAHE) (Reza, 2004), overlapped 
sub-blocks and local histogram projection (NOSHP) 
(Bovik, 2009), and fast local histogram specification 
(FLHS) (Liu, et al., 2014) are some of the examples of 
AHE. However, AHE can also cause artificial appear-
ance in the enhanced images due to amplification of 
noise. Works have been reported towards suppres-
sion of noise which include a multi-level histogram 
segmentation based algorithm that can also achieve 
improvement in terms of noise suppression (Tohl and 

Li, 2019) and pre-specified threshold based noise con-
trol in gain-controllable clipped histogram equaliza-
tion (GC-CHE) (Kim and Paik, 2008). These algorithms 
involve contextual partitioning of the image prior to HE 
which provides a better sense of local mapping of the 
input gray levels. 

In case of the approaches under the second group the 
images are converted to its frequency domain rep-
resentations using appropriate transforms and then 
the contrast enhancement is performed in different 
frequency bands. Some of the examples in this category 
are logarithmic transform histogram matching (LTHM), 
logarithmic transform histogram shifting (LTHS), log-
arithmic transform histogram shaping using Gaussian 
distributions (LTHSG) (Cao, et al., 2018; Lin, et al., 2015; 
Agaian, Silver and Panetta, 2007), spatial entropy-based 
contrast enhancement (SECE) and spatial entro-
py-based contrast enhancement by discrete cosine 
transform (SECEDCT) (Celik, 2014). Residual spatial 
entropy-based contrast enhancement (RSECE) and its 
extension to discrete cosine domain (RSECEDCT) have 
been reported as an improvement over SECE (Celik and 
Li, 2016). Spatial mutual information rank (SMIRANK) 
is another algorithm proposed in recent years where 
the gray levels in images are considered as nodes that 
are subjected to PageRank algorithm for mapping and 
can achieve both local and global contrast enhance-
ment simultaneously (Celik, 2016).

Retinex, a model that removes bias of source lighting 
from the image, has been adopted for contrast enhance-
ment as well. It includes single scale, multi scale retinex 
(MSR) (Jobson, Rahman and Woodell, 1997) and adap-
tive MSR (AMSR) (Lee, et al., 2013) models. The appli-
cation of camera response model has been reported in 
literature for contrast enhancement where exposure 
ratio map estimation is proposed towards assessment 
of the image under consideration as low-light image 
enhacement algorithm (LLIEA) (Ying, et al., 2017). The 
HE algorithms for image enhancement in specific appli-
cations have been developed as well. Improvement of 
infrared thermal image contrast based on the adaptive 
double plateaus HE (Li, et al., 2018), particle swarm 
optimization based infrared image contrast enhance-
ment (Wan, et al., 2018), improvement of face images 
suffering from non-uniform illumination (Shakeri, et 
al., 2017) and dynamic contrast enhancement of mag-
netic resonance imaging (DCE-MRI) (Padhani, 2002) 
are few examples of application specific developments 
of HE. 

In recent years computational intelligence (CI) algo-
rithms have also been used to achieve contrast 
enhancement (Ritika and Kaur, 2013) where the math-
ematical formulations are used as an evaluation func-
tion, conventionally called fitness function (Osareh, 
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Shadgar and Markham, 2009; Zhang, et al., 2009). In 
this context application of artificial bee colony (ABC) 
has been reported where image contrast enhancement 
is modeled as a transfer function using incomplete beta 
function (IBF) (Chen, Li and Yu, 2016). Different appli-
cations of genetic algorithm (GA) for contrast enhance-
ment can also be found (Tang, 2014) where the fitness 
function is developed using image intensity and edge 
information.

The application of hybrid approach involving ant col-
ony algorithm, GA and simulated annealing to optimize 
the fitness function consisting of edge, intensity and 
entropy information has been reported as well (Hoseini 
and Shayesteh, 2010). Dynamic fuzzy histogram equal-
ization (DFHE) technique has presented the applica-
tion of fuzzy algorithms in this context (Sheet, et al., 
2010). One of the attractive reasons of applying CI algo-
rithms is their adaptive nature that has been proven 
advantageous over conventional methods in solving 
many critical engineering problems (Konar, 2006). 

Bacteria colony optimization (BCO) is a popular CI 
algorithm (Passino, 2010; Chen, et al., 2014) that per-
forms optimization using behavioral pattern on motile 
bacteria such as Escherichia coli (E. coli), Salmonella 
and Myxococcus xanthus (M. xanthus). In case of BCO 
the chemotaxis behavior of bacteria for surviving in the 
environment (such as nutrients) and their movement 
towards or away from a specific location is employed 
(Niu, et al., 2013). The rationale behind selecting BCO 
is its advantage of not largely been affected by the 
size and non-linearity of the problem. This algorithm 
also has advantages such as less computational time 
requirement and can handle higher number of objec-
tive functions when compared to the other evolution-
ary algorithms (Majumder, Laha and Suganthan, 2019). 
Yet this algorithm has not been applied for contrast 
enhancement to the best of our knowledge.

The contribution of this work is two-fold: mathe-
matical formulation of a new objective function in 
frequency domain instead of using image quality eval-
uation metrics and optimizing the same using BCO. It is 
a tradeoff of spatial and frequency domain approaches 
since the objective function is formulated in spatial 
domain but the fitness evaluation is performed in fre-
quency domain. A considerable number of test images, 
both grayscale and color ones, have been tested with 
the presented method. The performance comparison 
of the presented method is portrayed using subjec-
tive and objective evaluation measures. The subjective 
evaluation is supported by observations in frequency 
domain analysis. The objective evaluation is presented 
using different standard image quality assessment 
(IQA) metrics of both full reference (FR) and no-refer-
ence (NR) types. 

2.  Histogram equalization using bacteria 
colony optimization

2.1  Fitness function formulation

Histogram equalization in grayscale image is based on 
CPDF calculated from the image intensity values in spa-
tial domain. In case of color images application of HE 
remains same however a conversion from the native 
RGB color space to a perceptual color space such as 
Hue, Saturation and Value (HSV) (Saravanan, Yamuna 
and Nandhini, 2016; Chien and Tseng, 2011) is needed. 
Applying the HE individually to the three channels of 
RGB can cause erroneous results because post HE mix-
ing between the color channels can result in a totally 
different perceived color at output image. Hence con-
version to a device independent color space like HSV 
is required prior to HE. After conversion the HE can be 
applied only to the Value (V) channel followed by com-
bining the equalized V channel to the other two chan-
nels which remain unaltered. Finally image is reverted 
to RGB color space. 

In this section a Fourier domain analysis on the results 
of histogram equalization techniques is presented 
towards development of fitness function. In this anal-
ysis the results of conventional and state-of-art tech-
niques, namely, GHE, BBHE, DSIHE, CLAHE, AMSR 
and LLIEA have been included. These techniques rep-
resent different classes of algorithms as mentioned 
in previous section. The study can be described with 
the help of Figures 1 and 2 where the results of said 
algorithms, corresponding difference fast Fourier 
transform (FFT) spectra (original spectrum subtracted 
from the enhanced image spectrum) and projection 
plots (horizontal and vertical) of the FFT spectra have 
been included. It may be noted that the Fourier spectra 
have been processed to obtain a clear view of resulting 
changes. The processing here involves binarization of 
log-transformed FFT spectrum followed by morpho-
logical operation.

Figure 1 shows that most of the conventional techniques 
fail to retain the background of the test image while the 
advanced algorithms namely, CLAHE, AMSR and LLIEA 
can successfully retain that. The difference FFT spectra 
along with the projection plots can be a possible tool to 
analyze the results. In frequency domain the contrast 
enhancement is expected to introduce more frequency 
components and an expansion of the Fourier spec-
trum is desired for better results. But the expansion in 
Fourier spectrum should not be random. The contrast 
enhanced image is expected to generate the Fourier 
spectrum which will be an expanded or stretched ver-
sion of the original image spectrum keeping parity to 
its shape of original image spectrum. Any HE algorithm 
that results in expansion of spectrum without keeping 
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similarity to the shape of original spectrum will also 
show improvement but may not retain the impor-
tant characteristics of the original image. As it can be 
seen in Figure 1, all classical HE enhancements result 
in contrast enhancement as reflected in their differ-
ence-spectrum by the resulted expansion. But at the 
same time expanded results are not well conforming 
to the shape of the original spectrum which results in 
loss of information as can be seen comparing the back-
ground gray region of original and modified images. 

Hence, the algorithms can enhance image contrast or 
quality undoubtedly but there is noticeable lack in pre-
serving the image characteristics. The projection plots 
can be possibly used to assess the shape conformance. 
The projection plots show that GHE, BBHE and DSIHE 
plots escalate through y axis keeping low adherence to 
the plot nature of original image. The plots for CLAHE 
shows comparatively better adherence while AMSR 
and LLIEA techniques are showing visibly improved 
adherence. These adherence results in better reten-

Figure 1: Fourier spectrum analysis of grayscale test image ‘Man’; (a) results of different HE techniques and 
corresponding FFT spectra, (b) horizontal projection plots, and (c) vertical projection plots for different techniques
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while less conforming to shape. The CLAHE method 
makes a balance between the expansion and shape 
conformity but a bit higher inclination towards spectra 
expansion while AMSR shows smaller expansion and 
better conformation to the shape. 

From the presented images and the Fourier domain 
analysis it can be observed that the classical techniques 
are more towards the magnitude expansion than shape 
adherence while the advanced techniques attempt to 

tion of original image features which can be seen by 
the retention of background grayness in their results. 
Nevertheless, the scope of improvements is still open. 
The same explanation may be drawn with color images 
as shown in Figure 2 where LLIEA does not show any 
visible expansion over the original image FFT spectra 
but it shows high degree of conformity to the shape 
of original image spectra as shown in projection plots 
of Figure 2. The classical techniques GHE, BBHE and 
DSIHE are more prone towards expansion of spectra 

Figure 2: Fourier spectrum analysis of color test image ‘House’; (a) results of different HE techniques and 
corresponding FFT spectra, (b) horizontal projection plots, and (c) vertical projection plots for different techniques
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reach the balance between those two parameters 
but room of improvement is visible. The under- and 
over-enhancements can also be correlated to the mag-
nitude expansion and shape adherence. Concretely, 
this work aims to achieve an optimum balance using 
BCO which can be a possible way to ensure avoidance 
of under- and over-enhancement problems that are 
visible in most of the classical as well as lately reported 
techniques. This leads to developing the optimization 
fitness function as a frequency domain parameter that 
will consider expansion and adherence to the shape of 
the original input spectrum. To use these parameters 
as fitness function the representative mathematical 
expression has been formulated as Equation [1].

𝜑𝜑 = 𝑤𝑤!𝑀𝑀 ∙ 𝑤𝑤"𝑆𝑆  [1]

where 𝜑 is the fitness function, M is the magnitude fun-
ction and S is the shape parameter. The weight parame-
ters w1 and w2 are tunable. The tuning of w1 and w2 is 
end-user requirement dependent; in the cases where 
retention of original image feature is of higher impor-
tance, such as in case of computer vision application, 
w2 can be assigned with a higher value. In cases where 
the visual appearance is more important and loss of 
features may be compromised, for example, for repro-
duction operations like printing, w1 can be assigned 
with a higher value. However, their sum must be equal 
to unity. Here, considering more general requirement, 
both visual appearance and feature retention have 
been given equal importance, i.e. w1 = w2 = 0.5.

In Equation [1], the magnitude function M can be calcu-
lated as the sum of the differences between processed 
FFT spectrum of original and enhanced image. It is 
important to note here that the expectation is towards 
expansion the magnitude function M not the contrac-
tion of the FFT spectrum. In the case of contraction 
the sum of the processed difference spectra becomes 
negative where the sum calculated from the binary dif-
ference image may be magnitude wise higher but with 
a negative difference value. This is not the desired case 
hence even if the value is higher this needs to have a 
measure of retreatment so that they are not favored 
over the case where a smaller positive value gets lower 
merit. To facilitate such cases the logarithmic value of 
sum is taken. Logarithmic transform can help in two 
ways: the range of the magnitude is reduced which 
gives ease of interpretation and also the contraction 
cases result in an imaginary value. In such cases the 
real value is divided by the imaginary value to get 
the final M value. The calculation of M value may be 
expressed as Equation [2].

M = log(∑D) where D = HEFFT − IFFT

[2]
if Im(M) ≠ 0 : M = Re(M)/Im(M)

where HEFFT and IFFT indicates the binary FFT spectra of 
histogram equalized image and original image, respec-
tively. In Equation [2], Re and Im correspond to real and 
imaginary parts, respectively. 

The shape parameter S in Equation [1] can be calculated 
from the projection plots shown in Figures 1 and 2 using 
the pair-wise Euclidian distance between the observa-
tions. Lower distance between observations interprets 
better adherence. The reciprocal combination of pair-
wise distance in horizontal and vertical projections is 
considered in this work as shown in Equation [3]. The 
reason of taking reciprocal is to bring both S and M into 
same interpretability, i.e. for both of those parameters 
higher values indicate better results.

𝑆𝑆 =
1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑(𝐼𝐼!"#, 𝐻𝐻𝐻𝐻!"#) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑(𝐼𝐼$%#, 𝐻𝐻𝐻𝐻$%#)
 

 

 
[3]

where, Ihor and HEhor indicate the horizontal projec-
tions of original image and histogram equalized image, 
respectively. Similarly, Iver and HEver represents the ver-
tical projections. The higher value of M and S will cause 
a higher fitness value of 𝜑 which is considered as bet-
ter fitness while performing the optimization.

2.2  Bacteria colony optimization

In BCO the bacterial behavior is mimicked. Like many 
other agent based search algorithms BCO also follows 
the dynamics of bacterial foraging to find an optimum 
solution of complex problem. Bacteria generally gather 
to the high nutrient areas by propelling themselves 
through rotation of the flagella maintaining an activity 
called chemotaxis (Chen, et al., 2014). The flagella rotate 
counter clockwise for forward movement; it is called 
that the organism “swims” or “runs”. When the flagella 
rotate clockwise, it causes the bacterium to “tumble” 
itself randomly and then it starts to swim again in a 
new direction. These swim and tumble activities help 
the bacterium for searching nutrients in random direc-
tions. Swimming and tumbling occurs more frequently 
for approaching a nutrient gradient by bacterium and 
to move away from some food for searching more 
foods. Bacterial chemotaxis is a complex combination 
of swimming and tumbling for placing the bacteria to 
a higher concentration of nutrients. Schematically BCO 
can be represented as an algorithm in Figure 3. The dif-
ferent mechanisms of BCO are described in following 
sections.

2.2.1 Chemotaxis

Chemotaxis mechanism works on the principle of tum-
ble and run process. The movement of the ith bacterium 
for every step of chemotactic process is expressed as 
Equation [4] (Niu, et al. 2013) considering 𝜃i(j, k, l) 
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denotes the position of ith bacterium at jth chemotac-
tic, kth reproductive, and lth elimination-dispersal step. 
Further, R(i) represents the step size of the chemotaxis 
for this bacterium at the time of every run or tumble 
(run-length unit).

𝜃𝜃!(𝑗𝑗 + 1, 𝑘𝑘, 𝑙𝑙) = 𝜃𝜃!(𝑗𝑗, 𝑘𝑘, 𝑙𝑙) + 𝑅𝑅(𝑖𝑖)
∆(𝑖𝑖)

.∆"(𝑖𝑖) ∙ ∆(𝑖𝑖)
 

 

 
[4]

where Δ(i) is the jth chemotactic step direction vector. 
At the time of run movement, Δ(i) is maintained the 
same with the last chemotactic step; otherwise, Δ(i) is 
a random vector whose elements are in the range of 
[−1,1]. Finally for each bacterium, a step fitness denoted 
by J(i, j, k, l) is evaluated from the activity of run or 
tumble taken at each step of the chemotaxis process.

2.2.2 Swarming

Swarming mechanism as expressed in Equation [5] 
(Niu, et al., 2013) represents the the cell-to-cell commu-
nication process as each bacterium is capable of actuat-
ing, sensing, and decision-making mechanism. During 
the time of bacterium movement, it releases attractant 

to provide indication of other bacteria to swarm that 
direction. In the meantime, every bacterium releases 
repellent to inform other bacteria to maintain a safe 
distance from it.

𝐽𝐽!!"𝜃𝜃, 𝑃𝑃(	𝑗𝑗, 𝑘𝑘, 𝑙𝑙), =.𝐽𝐽!!"
#!

"$%

/𝜃𝜃, 𝜃𝜃"(	𝑗𝑗, 𝑘𝑘, 𝑙𝑙)0	

=.1−𝑑𝑑&''(&!'	exp 7−𝑤𝑤&''(&!' ."𝜃𝜃) − 𝜃𝜃)" ,
"

*!

)$%

9:
#!

"$%

	

+.1−ℎ(+,+-+.'	exp7−𝑤𝑤(+,+-+.' ."𝜃𝜃) − 𝜃𝜃)" ,
/

*!

)$%

9:
#!

"$%

 

 

 
[5]

 
where, Jcc(θ, P(j, k, l)) is the fitness function value with 
the addition of the actual fitness function for minimiz-
ing a presented time varying fitness function. The total 
bacteria number is denoted by Sb.

The number of parameters present in each bacterium 
to be optimized is denoted by Pb; wattract, wrepelent, dattract 
and hrepelent are various optimization coefficients.

Figure 3: Schematic representation of BCO algorithm
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2.2.3 Reproduction 

The reproduction mechanism maintains the good indi-
vidual bacteria and eliminates bad ones based on the 
health condition of every bacterium. This is calculated 
by the sum of the step fitness during its life,

i.e., !𝐽𝐽(𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙)
!!

"#$

,

where Nc denotes the maximum number of steps in 
a chemotaxis process (Niu, et al., 2013). The fitness 
values of all bacteria are sorted in the order of good 
health status. In the production step, only the first half 
of total bacteria stay and second half of bacteria with 
poor health status are deleted. Each bacterium from 
the first half divides into two identical ones which are 
placed then in the same location to maintain the num-
ber of bacteria constant.

2.2.4 Elimination and dispersal 

According to the change of environmental conditions, 
bacteria are greatly affected. In BCO model, when a 
certain number of reproduction processes happens, 
the dispersion processes occur. According to a fixed 
probability Ped, some bacteria are to be selected for 
elimination and shift to another location within the 
environment. Simultaneously, the new ones are gener-
ated according to reproduction process.

2.3  Implementation of bacteria colony 
optimization in histogram equalization

This section presents the process of HE using BCO 
(HEBCO). To apply the BCO for color images first the 
image was converted to HSV color space from its native 
RGB color space. The V channel was separated and sub-
jected to the BCO algorithm. The BCO was initiated with 
predefined numbers of solutions which are some ran-
domly generated intensity levels in our case. Since the 
V channel values can vary from 0−255 in an 8-bit sys-
tem the dimension of the space here is 256. The opti-
mization has been performed towards maximization of 
the fitness function as described in section 2.1. Like all 
the meta-heuristics, BCO also is iterative in nature and 
the best solution at the end of each iteration is found 
using an objective function. This objective function can 
be kept same as fitness function but in our case an IQA 
based objective function has been used. 

Considering our goal of retaining the original image 
features in enhanced image, brightness preserva-
tion is an important criteria and it can be measured 
using absolute mean brightness error (AMBE) (Raju, 
Dwarakish and Reddy, 2013) metric as expressed in 
Equation [6]. Apart from brightness, the optimization 
is driven to maintain information fidelity in terms 

of image entropy (Wang and Ye, 2005) calculated as 
given in Equation [7] and structural similarity using 
structural similarity index measure (SSIM) (Horé and 
Ziou, 2010) calculated according to Equation [8]. 

AMBE(𝑋𝑋𝑋 𝑌𝑌) = |𝐸𝐸(𝑋𝑋) − 𝐸𝐸(𝑌𝑌)|  [6]

where, X and Y denote the input image and output 
image, respectively, and E denotes the expected value 
of statistical mean. Lower AMBE indicates the better 
brightness preservation of the image.

𝐸𝐸𝐸𝐸𝐸𝐸[𝑃𝑃] = −) 𝑃𝑃!	log(𝑃𝑃!)
!

 

 

 [7]

where ENT denotes entropy and P is indicating the 
probability, which is the difference between two adja-
cent pixels of the image. Higher values of entropy indi-
cate the richness of the image quality.

SSIM(𝑋𝑋𝑋 𝑌𝑌) = 𝑙𝑙(𝑋𝑋𝑋 𝑌𝑌) ∙ 𝑐𝑐(𝑋𝑋𝑋 𝑌𝑌) ∙ 𝑠𝑠(𝑋𝑋𝑋 𝑌𝑌)  [8]

where X and Y denote the input image and output 
image, respectively, and l denotes the luminance 
comparison of input and output image. Similarly, c 
and s denote the contrast and structural comparison 
between input and output image, respectively. Higher 
value of SSIM indicates better quality of output images. 
Using the above three parameters the objective func-
tion has been formulated as Equation [9]. The pseudo 
code of the HEBCO is presented in Table 1.

∅ = (𝐸𝐸𝐸𝐸𝐸𝐸(𝐼𝐼) + 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆(𝐼𝐼, 𝑂𝑂))
𝐴𝐴𝑆𝑆𝐴𝐴𝐸𝐸(𝐼𝐼, 𝑂𝑂)0  

 

 [9]

where I and O represent the enhanced image and ori-
ginal image, respectively. The ∅ has been formulated 
such a way that a higher value will indicate better 
result. Thus, the objective of optimization is towards 
maximization. The algorithm performs iteratively with 
predefined termination condition. In this case the 
condition is either exhausting specified number of ite-
rations or not showing any improvement for 10 conse-
cutive iterations.

Table 1: Pseudo code of HEBCO

/* Assignment */
Load the low contrast image as input.
Initialize BCO parameters

d: Dimension of the search space
B: Number of bacteria
Sc: Chemotaxis steps
Ss: Swim steps
Sre: Reproductive steps
Sed: Elimination and dispersal steps
Ped: Probability of elimination
RL: The run-length units during each run or tumble

Initialize random solutions based on input image histogram.
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/* Update */
Compute the fitness value of these solutions using 
Equation [1].
Compute a new solution with improved fitness using the 
process of chemotaxis loop.
Store the fitness value for finding better value by run 
process of BCO operation.
Generate a number of random solutions based on 
the number of eliminating solutions by fitness value 
according to the process of reproduction loop and 
elimination–dispersal loop.
Compute the fitness of these randomly generated 
solutions.
Check the fitness value, whether it is better with respect 
to the previously selected solutions.
Store the fitness value and select the most-fit solutions.
Find the objective function value resulting from the most-
fit solution at each iteration using Equation [9].
Terminate the loop while meeting the termination condition.
/* Enhancement */
Reconstruct the V channel with the best solution found 
using BCO.
Replace the original image V channel with the optimized 
V channel.
Convert the image back to RGB color space for visual 
presentation.

3.  Results

The presented HEBCO was tested with different images 
from standard databases, namely, SIPI, TID2008 
(TID), and LIVE (SIPI, n.d.; Ponomarenko, et al., 2009; 
Ghadiyaram and Bovik, 2015). The algorithms have been 
implemented using Matlab® software in Windows per-
sonal computer. All the images have been reproduced 
at 300 dpi resolution.

The experimental setup for the tunable parameters was 
arrived at using training–validation–testing method. To 
decide the parameter values a set of 100 images from 
different datasets was maintained. Images with all 
possible variations from the database were included 
in this dataset ranging from grayscale to color, differ-
ent degree of low contrast and different illumination 
distortions. This dataset was partitioned in train, val-
idation and test set with 60:20:20 proportions. The 
tunable parameters were varied within the ranges of 
values as commonly practiced in BCO. The combination 
that gave best fitness was considered for validation set. 
In validation set even lower range of variation with a 
smaller step size was used to finalize the parameter 
values. The final values arrived with the validation set 
are presented in Table 2 and were used for testing set 
as well as results presented in this paper.

Figure 4: Result of HEBCO technique for grayscale test image ‘Man’

Original HEBCO

Original histogram Enhanced histogram

0 50 100 150 200 250 300

4.0

3.5

3.0

2.5
2.0

1.5

1.0

0.5
0

×104

5.0
4.5
4.0
3.5
3.0
2.5

2.0
1.5
1.0
0.5

0
0 50 100 150 200 250 300

×104



104 S. Kumar Mondal, A. Chatterjee and B. Tudu – J. Print Media Technol. Res. – Vol. 10 No. 2 (2021), 95–118

Table 2: HEBCO parameter setting

d: Dimension of the search space
B: Number of bacteria
Sc: Chemotaxis steps
Sre: Reproductive steps
Sed: Elimination and dispersal steps
Ped: Probability of elimination
RL: The run-length units during each run/tumble

256
 10
 50
  8
  5
  0.20
  0.1

The results of HEBCO have been presented with two 
examples in Figures 4 and 5 for grayscale and color 
images, respectively. In both the cases histograms are 
included for understanding the contrast enhancement. 

In Figure 4 it can be seen that HEBCO can retain the 
original image characteristics. The background gray-
ness which many of the conventional as well as later 
developed HE techniques could not retain (as shown in 
Figure 1) has been well retained by HEBCO. There are 

no visible false contouring and artificial patches in the 
HEBCO result. Also the balance between the dark and 
highlight regions is visually pleasant. The result also 
does not show occurrences of over- or under-exposure 
since the result is not inclined to white or black regions 
of intensity range. The corresponding histograms also 
convey the balanced enhancement. Another important 
observation in terms of histogram is retaining the peak 
information of original histogram.

Figure 5 shows the result with one of the color test 
images. In this case the corresponding V channels have 
also been included. It can be clearly seen that the con-
trast in the V channel has been significantly improved. 
That in turn results in improved visual appearance of 
enhanced image. The histograms of V channel convey 
that the HEBCO can result in stretching the original 
narrow histogram across the available intensity levels 
while maintaining the characteristics of original image 
histogram. 

Figure 5: Result of HEBCO technique for color test image ‘Bird’
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4.  Discussions

This section presents the comparative assessment 
of HEBCO with the established reported techniques. 
Among different techniques, 10 have been considered 
in this paper. These techniques cover different par-
adigms of algorithms in both spatial and frequency 
domains.

Figure 6 shows the performance of different algorithms 
on a grayscale image. The enhancement capability of 
HEBCO is visibly better than the other techniques under 
consideration. The result of CLAHE is having higher 
sharpness while AGCWD provides higher smoothness 
and whiteness. Similarly, the AMSR and LLIEA results 
are under- and over-enhanced, respectively. The CI 
techniques based algorithms, except ABCHE, result in 
comparatively balanced enhancement. 

Figures 7 to 9 are the examples of results with different 
algorithms on color test images. The visual appearances 
of HEBCO results clearly show the attainment of con-
trast improvement while retaining the original image 
characteristics in case of color images. In Figure 7 most 
of the conventional techniques fail to retain the color 
information of input image which is visible in case of 
leaves that are appearing almost black in the output 

of most of the conventional techniques. While AMSR 
and DFHE results are showing the biasness of the level 
distribution towards dark intensities which causes 
under-enhancement, LLIEA and ABCHE show tendency 
of increasing overall whiteness which causes over-en-
hancement. The results of CLAHE, AGCWD, GAHE and 
HEBCO are more appealing but HEBCO shows better 
visual balance as tendency to increase whiteness and 
darkness can be seen in the results of AGCWD and 
GAHE, respectively. The observations drawn with 
Figure 7 remain true for Figure 8 as well but CLAHE 
shows a higher tendency of over-sharpening the image. 
In Figure 9 apart from previous observations one more 
important observation is the retention ability of pat-
terns, particularly gradient. It can be seen that most of 
the techniques fail to retain the blue gradient pattern. 
In most of the cases the gradient is flatten down while 
HEBCO can retain that visibly. 

Figures 10 and 11 are results from LIVE database 
images which consist of images captured by mobile 
devices in different lighting conditions and enhance-
ment of contrast is challenging. It can be seen that all 
the CI algorithms perform well in this type of images. 
Conventional techniques like GHE, BBHE and DSIHE 
performs poorly in these cases and they tend to flatten 
down the images in either side of the intensity scale 

Figure 6: Results of different HE techniques for grayscale test image ‘Cat’; (top row from left to right) original 
(input) image, GHE, BBHE, DSIHE, (middle row left to right) CLAHE, AGCWD, AMSR, LLIEA, 

(bottom row left to right) DFHE, GAHE, ABCHE, and presented HEBCO
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which causes patches, loss of details and poor visual 
appearance. The CLAHE, AGCWD, AMSR and LLIEA 
techniques can overcome those limitations but they 
also show under- or over-enhancement that can be 
seen as whitish appearance of LLIEA result or loss of 
desired brightness in AMSR result. The HEBCO result 
is comparatively better in terms of appearance since 

there are no such patches or false contouring and also 
better retention of details as can be seen in the ‘denim’ 
hanging in the picture. In the results of conventional 
techniques the ‘denim’ pattern is almost turned into 
dark patches while CLAHE and HEBCO gives a much 
natural appearance along with contrast enhancement 
in the resulting image.

Figure 7: Results of different HE techniques for color test image ‘Flower’; (top row from left to right) original 
(input) image, GHE, BBHE, DSIHE, (middle row left to right) CLAHE, AGCWD, AMSR, LLIEA, 

(bottom row left to right) DFHE, GAHE, ABCHE, and presented HEBCO

Figure 8: Results of different HE techniques for color test image ‘Girl’; (top row from left to right) original  
(input) image, GHE, BBHE, DSIHE, (middle row left to right) CLAHE, AGCWD, AMSR, LLIEA, 

(bottom row left to right) DFHE, GAHE, ABCHE, and presented HEBCO
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Figure 9: Results of different HE techniques for color test image ‘Pattern’; (top row from left to right) original 
(input) image, GHE, BBHE, DSIHE, (middle row left to right) CLAHE, AGCWD, AMSR, LLIEA, 

(bottom row left to right) DFHE, GAHE, ABCHE, and presented HEBCO

Figure 10: Results of different HE techniques for color test image from LIVE database; 
(top row from left to right) original (input) image, GHE, BBHE, DSIHE, 

(middle row left to right) CLAHE, AGCWD, AMSR, LLIEA, 
(bottom row left to right) DFHE, GAHE, ABCHE, and presented HEBCO
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On an overall visual assessment it can be stated that 
CLAHE, AGCWD, AMSR and LLIEA techniques are 
superior to conventional HE techniques. But they also 
show limitations like over- or under-enhancement, 
unwanted sharpness or smoothness and loss of orig-
inal image features. Such limitations can results in 
loss of naturalness in the enhanced images. The CI 
techniques show promising improvement on those 
parameters and HEBCO shows considerable poten-
tial by visually equivalent or better results in all the 
cases. The limitations can be further studied using the 
magnitude and shape parameters presented in this 
paper. A comparative presentation of the differential 
Fourier spectrum and projection plots with different 
techniques is presented in Figures 12 and 13. In those 
figures the algorithms have been classified into three 
groups for better visualization. The green lines pre-
sents the algorithms that are based on histogram seg-
mentation and statistical partitioning which include 
GHE, BBHE, DSIHE, CLAHE and AGCWD. The magenta 
lines plot model based algorithms that include AMSR 
and LLIEA The blue lines indicate the CI based algo-
rithms. To distinguish the original and the result of 
presented HEBCO, they have been represented using 
red and black color, respectively.

Figures 12 and 13 reveal interesting facts about the 
enhancement by different techniques. The DSIHE 
shows considerable magnitude expansion in spectra 
but like other histogram partitioning approaches it 
does not conform much to the original image bright-
ness distribution pattern which can be seen in the 
green projections plots. The CLAHE and AGCWD are 
showing much better expansion in FFT spectra and 
conformity to the plots of original image including 
an escalation in the y-axis of the projection plots. The 
CLAHE and AGCWD plots are the plots coming in the 
region where the black, blue and magenta plots are 
coming. On the other hand AMSR and LLIEA results 
are showing good adherence to the original image 
features in the projection plots as the magenta plots 
are closely following the plot of original image and a 
reasonable escalation in the y-axis. All the CI based 
techniques show their potential to enhance the image 
contrast but HEBCO result shows visible adherence to 
the original image characteristics while improving the 
contrast. The difference FFT spectra are closely match-
ing to the shape of original image spectra while in 
terms of projection plot it is neither going very high in 
the y-axis of the projection plots nor loosing similarity 
to the original image plot. This confirms the potential 

Figure 11: Results of different HE techniques for color test image from LIVE database; 
(top row from left to right) original (input) image, GHE, BBHE, DSIHE, 

(middle row left to right) CLAHE, AGCWD, AMSR, LLIEA, 
(bottom row left to right) DFHE, GAHE, ABCHE, and presented HEBCO
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of HEBCO to avoid over- or under-enhancements. The 
conventional GHE and BBHE in all the cases majorly 
increase the contrast keeping fewer adherences to the 
original image features as can be seen by the green 
plots appearing at the top, far away from the plot of 
original image, in the projection plots.

The visual analyses have further been extended to the 
objective evaluations against the IQA metrics. Among 
many IQA metrics in this work two FR and two NR 
metrics have been considered in this presentation. The 
FR (Larson and Chandler, 2010) metrics include the 
ground truth images for evaluation and in this paper 

Figure 12: Adherence to the original image characteristics analysis for test image ‘Girl’ 
(a) differential magnitude spectra, (b) horizontal projection plots, and (c) vertical projection plots
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patch-based contrast quality index (PCQI) (Wang, et 
al., 2015) and feature similarity index measure (FSIM) 
(Zhang, et al., 2011) metrics have been used. The PCQI 
can be a good indicator of contrast enhancement and 

local distortion measure while FSIM can be good meas-
ure for feature retention in enhanced images. Despite 
being FR metrics, both PCQI and FSIM consider the 
human perceptual characteristics in evaluation. The NR 

Figure 13: Adherence to the original image characteristics analysis for test image from LIVE database 
shown in Figure 11; (a) differential magnitude spectra, (b) horizontal projection plots, 

and (c) vertical projection plots semilogx scale
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(Mittal, Soundararajan and Bovik, 2012a) metrics do 
not include the ground truth for evaluation but they 
measure overall naturalness in enhanced images and a 
higher degree of naturalness is desired to avoid over- 
and under-enhancement causing artificial appearance 
in the enhanced images. The BRISQUE (Mittal, Moorthy 
and Bovik, 2011) and NIQE (Mittal, Soundararajan and 
Bovik, 2012b) are considered here as NR metrics for 
this purpose.

The PCQI is a metric popular in contrast enhancement 
evaluation. Instead of global enhancement it performs 
local patch based evaluation. It is based on signal 
decomposition philosophy and mathematically repre-
sented by variations in signal strength and signal struc-
ture as presented in Equation [10]. The outcome of PCQI 
can be interpreted in two ways; the PCQI map which is 
a graphical representation of contrast enhancement 
and a mean PCQI value which indicates improvement 
by higher values. The white and bright patches show 
improvement while the dark and black patches show 
degradation. For easier understanding PCQI map is 
often binarized setting patches with PCQI < 1 to 0 and 
rest to 1. There may be areas in output image which 
appear with high contrast and brightness but if that 
comes as a black patch in the binarized PCQI then it is 
showing under- or over-enhancement which results in 
distortions. Therefore, binarized PCQI map with lesser 
black patches indicates better enhancement. Similarly, 
calculating the mean value of patches as shown in 
Equation [10] the mean PCQI value is obtained which 
also has higher values for better enhancement. The 
binarized PCQI maps for two test images are shown in 
Figures 14 and 15.

PCQI(𝑥𝑥𝑥 𝑦𝑦) = 𝑞𝑞!(𝑥𝑥𝑥 𝑦𝑦) ∙ 𝑞𝑞"(𝑥𝑥𝑥 𝑦𝑦) ∙ 𝑞𝑞#(𝑥𝑥𝑥 𝑦𝑦)  [10]

where, x and y are co-located patches in the reference 
image X and enhanced image Y, respectively, qi(x, y) is 
the difference estimation in terms of mean intensity, 
qc(x, y) is the parameter that corresponds to contrast 
change and for a better contrast image qc(x, y) > 1. 
Finally, qs(x, y) corresponds to the structural distortion. 
If there are total N patches then mean PCQI is calcu-
lated as Equation [11].

PCQI(𝑋𝑋, 𝑌𝑌) =
1
𝑁𝑁-PCQI.𝑥𝑥! , 𝑦𝑦!1

"

!#$

 

 

 [11]

The PCQI maps shown in Figures 14 and 15 portray the 
potential of different algorithms towards enhancement 
and causing degradation in the resulting enhanced 
images. Figure 14 shows that BBHE, DSIHE and 
Ying et al. resulting considerable amount of distortion 
which we observed in terms of under-enhancement in 
our FFT spectrum and projection plot based analysis. 

The distortions obtained in GHE, AGCWD and AMSR 
are comparable but they show higher degree of distor-
tion than the DFHE, GAHE and ABCHE. The results of 
CLAHE and presented HEBCO are showing least degree 
of distortions in comparison to all other techniques. 
The results of PCQI in Figure 15 show that GHE pro-
duced higher degree of distortion like BBHE and DSIHE 
while DFHE produced lesser distortions. However, 
results of CLAHE and HEBCO are consistently main-
taining visibly lesser amount of distortion. The AMSR 
and AGCWD show lesser distortion than LLIEA and 
all the CI techniques performed better. Experimental 
results have shown that CI algorithms work compar-
atively better in case of uneven illumination for the 
images from LIVE database.

The FSIM is a metric which can represent the feature 
similarity between reference/original and enhanced 
image. This can be calculated as Equation [12]. The 
higher values of FSIM indicate better results, i.e. better 
retention of original image features. It is based on phase 
congruency (PC) and gradient magnitude (GM) fea-
ture maps extracted between reference and enhanced 
images. The human perceptual nature is included in 
this metric in terms of phase congruent structure to 
which human eyes are sensitive. Feature retention can 
be important for computer vision applications of HE 
for example medical imaging.

FSIM =
∑ 𝑆𝑆!(𝑥𝑥) ∙ PC"(𝑥𝑥)#∈%

∑ PC"(𝑥𝑥)#∈%
 

 

 [12]

where Ω represents entire image in spatial domain, 
the similarity is measured between two images f1(x) 
and f2(x), SL(x) is the similarity calculated using PC and 
GM measures with assigned relative importance and 
PCm(x) = max (PC1(x), (PC2(x)).

The BRISQUE is a convenient measure towards natu-
ralness in the image. One advantage of BRISQUE is it 
does not include any frequency domain transforms 
like discrete cosine transform or wavelet transform as 
many other NR IQA techniques. This makes the met-
ric simpler and faster. This metric is based on a gen-
eralized Gaussian distribution (GGD) fit of the mean 
subtracted contrast normalized (MSCN) coefficients 
applied on the locally normalized luminance of the 
input image. The scoring mechanism in the metric is 
based on a regression model where the singular value 
decomposition features have been subjected to sup-
port vector machine regressor (SVR). The lower scores 
indicate higher degree of naturalness in the image.

The NIQE is a feature based metric where a multivar-
iate Gaussian (MVG) fit of the natural scene statis-
tics (NSS) features are extracted from the test image 
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Figure 14: The binarized PCQI map of test image ‘Girl’; (top row left to right) GHE, BBHE, DSIHE, CLAHE, 
(middle row left to right) AGCWD, AMSR, LLIEA, DFHE, (bottom row left to right) GAHE, ABCHE and HEBCO

Figure 15: The binarized PCQI map of test image from LIVE database shown in Figure 10; 
(top row left to right) GHE, BBHE, DSIHE, CLAHE, 

(middle row left to right) AGCWD, AMSR, LLIEA, DFHE, 
(bottom row left to right) GAHE, ABCHE and HEBCO
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and the quality is assessed as distance between this 
MVG and a defined MVG of the quality image features 
extracted from a numbers of natural images. A lower 
distance as indicated by lower metric value D indicates 
better result. It is expressed as Equation [13].

𝐷𝐷(𝑣𝑣!, 𝑣𝑣", Σ!, Σ") = ()(𝑣𝑣! − 𝑣𝑣")# ∙ ,
Σ! + Σ"
2 /

$!

∙ (𝑣𝑣! − 𝑣𝑣")0 

 
𝐷𝐷(𝑣𝑣!, 𝑣𝑣", Σ!, Σ") = ()(𝑣𝑣! − 𝑣𝑣")# ∙ ,

Σ! + Σ"
2 /

$!

∙ (𝑣𝑣! − 𝑣𝑣")0 

 

 [13]

where ν and Σ are mean and covariance matrix, respec-
tively, and T denotes the transpose operation. The 
natural MVG model and distorted MVG models are 
indexed as 1 and 2, respectively.

The mean evaluation results against these four metrics 
for individual databases are consolidated in Table 3 
where the top two performers in respect to each 
metrics and databases have been highlighted. Table 3 
shows that in terms of mean PCQI CLAHE performs 
best among all other techniques, HEBCO is next to 
CLAHE. But, in case of LIVE database, LLIEA performs 
better than CLAHE. The conventional techniques, par-
ticularly GHE, are also competitively performing for 
SIPI and TID databases but performance becomes vis-
ibly poor in case of LIVE database. This conveys the 
limitation of conventional techniques for unevenly 
illuminated images.

The significant downfall in the performance of DFHE is 
also visible while the CI techniques based HE perform 
consistently well against all the databases under con-
sideration. Since, PCQI is a measure of patch-wise over- 
and under-enhancement or distortions in the obtained 

image. It can be concluded from Table 3 that HEBCO 
can result in better contrast enhancement and lesser 
distortion in variety of images.

The FSIM is an indicator that can show the retention of 
original image features in resulting image. The LLIEA 
technique performs best across all the databases in 
this regard while HEBCO can perform well but could 
not perform as good as AMSR and DFHE in case of SIPI 
and TID databases, respectively. Although in case of 
LIVE database the performance is considerably better 
than most of the algorithms, which conveys the feature 
retention capability of HEBCO for unevenly illuminated 
images. In an overall judgment HEBCO performance is 
not poor as it can outperform many other techniques 
in terms of FSIM.

The BRISQUE and NIQE metrics convey the naturalness 
in resulting image which is very important and can be 
used to assess the ability of an algorithm to avoid artifi-
cial appearance caused due to inappropriate enhance-
ments. In terms of those two metrics HEBCO shows its 
potential to retain naturalness in the resulting images 
avoiding under- and over-enhancement.

The conventional algorithms like GHE, BBHE and 
DSIHE along with some of the advanced algorithms like 
AMSR also cause loss of naturalness. LLIEA technique 
performs well against BRISQUE measure and AGCWD 
performs well in case of NIQE measure. Therefore, 
inference can be drawn that none of the techniques 
including HEBCO can perform best against all of 
the metrics but HEBCO has merits over many of the 
reported techniques in each aspect considered here. 
The HEBCO needs to improve its performance in terms 
of FSIM to secure position in top two best performers.

Table 3: Consolidated evaluation results against mean PCQI, FSIM, BRISQUE and NIQE

Techniques
mean PCQI 
SIPI     TID    LIVE

FSIM 
SIPI     TID    LIVE

BRISQUE 
SIPI     TID    LIVE

NIQE 
SIPI     TID    LIVE

GHE 1.018 1.156 0.466 0.702 0.608 0.622 33.8 19.16 84.18  6.68  3.6 19.64
BBHE 0.939 1.087 0.461 0.696 0.605 0.620 36.6 25.69 92.75  6.85  4.4 19.75
DSIHE 0.911 1.081 0.457 0.667 0.611 0.621 39.7 28.47 84.55  7.54  4.6 19.67
CLAHE 1.268 1.279 0.489 0.795 0.601 0.619 27.4 16.35 84.04  5.23  3.5 19.83
AGCWD 1.065 1.083 0.472 0.872 0.601 0.620 24.9 14.76 87.16  5.16  3.4 19.21
AMSR 0.977 0.999 0.878 0.928 0.927 0.300 29.7 14.57 94.79 20.20 19.4 22.40
LLIEA 0.999 0.999 0.999 0.929 0.924 0.997 21.9 11.61 86.72 19.90 19.1 19.26
DFHE 0.999 1.024 0.685 0.857 0.927 0.235 30.3 13.26 91.95  5.57  3.7 16.02
GAHE 1.022 1.105 0.973 0.881 0.599 0.978 28.2 14.68 20.37  5.34  3.5 16.17
ABCHE 0.944 1.096 0.907 0.885 0.879 0.976 28.5  8.92 17.63  5.68  3.5 16.33
HEBCO 1.083 1.164 0.974 0.904 0.883 0.978 23.6 11.40 18.02  4.97  3.4 15.23



114 S. Kumar Mondal, A. Chatterjee and B. Tudu – J. Print Media Technol. Res. – Vol. 10 No. 2 (2021), 95–118

5.  Conclusions

The work has presented application of BCO towards 
contrast enhancement using HE methodology to obtain 
enhanced images while preserving the important 
characteristics of the original image. The frequency 
domain analysis of contrast enhancement has been 
used to formulate the fitness function and the optimi-
zation is performed in respect of different parameters 
like image brightness, signal/information fidelity and 
structural as well as feature information of the original 
image. The results have been presented visually and 
objective assessments have been drawn in compari-
son to the established HE techniques. The comparative 
analysis shows the competitive potential of HEBCO 
against the established techniques while overcoming 
different limitations of conventional HE approaches. 

The work can further be extended to the application 
of other CI algorithms, tuning the fitness function for 
more robustness, BCO parameter optimization, a pre-
dictive model of the optimization framework where 
the input image can be enhanced based on a set of 
defined equalized histograms obtained by BCO, model 
based HE applications and inclusion of more optically 
derived measure of contrast for objective function for-
mulation. The presented method has been explored 
considering image appearance in general which pro-
vides another important direction towards inclusion 
of prepress and press parameters in the objective 
function to obtain improved output quality of differ-
ent prepress and printing systems. Finally, the paper 
has presented an important step towards application 
of BCO algorithms for image characteristics preserving 
contrast enhancement.
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List of Abbreviations

ABC artificial bee colony
AHE adaptive histogram equalization 
AMBE absolute mean brightness error 
AMSR adaptive multi scale retinex 
BBHE brightness preserving bi-histogram equalization 
BCO bacteria colony optimization 
CI computational intelligence 
CLAHE contrast limited adaptive histogram equalization 
CPDF cumulative probability density function 
DCE-MRI dynamic contrast enhancement of magnetic resonance imaging 
DFHE dynamic fuzzy histogram equalization 
DHE dynamic histogram equalization 
DSIHE dual sub-image histogram equalization 
EHS exact histogram specification 
ENT entropy
FFT fast Fourier transform 
FLHS fast local histogram specification 
FR full reference 
FSIM feature similarity index measure 
GA genetic algorithm 
GC-CHE gain-controllable clipped histogram equalization 
GGD generalized Gaussian distribution
GHE global histogram equalization 
GM gradient magnitude 
HE histogram equalization 
HEFFT binary FFT spectra of histogram equalized image
HSV Hue, Saturation, Value 
IBF incomplete beta function 
IFFT binary FFT spectra of original image 
IQA image quality assessment 
LLIEA low-light image enhancement algorithm
LTHM logarithmic transform histogram matching 
LTHS logarithmic transform histogram shifting 
LTHSG logarithmic transform histogram shaping using Gaussian distributions 
M magnitude function 
MSCN mean subtracted contrast normalized coefficient
MSR multi scale retinex 
MVG multivariate Gaussian 
Nc maximum number of step in a chemotaxis process
NOSHP overlapped sub-blocks and local histogram projection 
NR no-reference 
NSS natural scene statistics 
P probability
Pb bacterium parameter
PC phase congruency 
PCQI patch-based contrast quality index 
PDF probability density function 
RSECE residual spatial entropy-based contrast enhancement 
RSECEDCT residual spatial entropy-based contrast enhancement extension to discrete cosine domain 
S shape parameter 
Sb total bacteria number
SECE spatial entropy-based contrast enhancement 
SECEDCT spatial entropy-based contrast enhancement by discrete cosine transform 
SMIRANK spatial mutual information rank 
SSIM structural similarity index metric 
SVR support vector machine regressor 
V Value channel
φ fitness function
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