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Abstract�
�
The reconstruction of spectral reflectance from RGB triplets created by digital cameras is a topic of great interest.  
Different approaches dealing with this topic have been published. In the recent years, most approaches utilize neural 
networks. These approaches mainly differ in the chosen network architecture, the way of obtaining the dataset and 
the used hardware. While the most approaches aim for generalized applicability on a wide range of spectra, this 
paper aims for applicability on a limited set of spectra given by a typical use case of the printing industry. In this 
paper a neural network was trained to predict the spectral reflectance of prints. Therefore, 10 800 color patches were 
printed, measured by a spectrophotometer and captured by an RGB camera under different light sources generated 
with a DLP projector. The performance of the trained network was tested by determining the CIEDE2000 color dif-
ference as well as the mean squared error between the predicted and the measured spectral reflectance. The dataset 
was systematically reduced to examine how the number of color patches and light sources used for training influ-
ences the performance of a network. This paper shows that a network performed best when confronted with prints 
printed on the same substrate using the same color management settings as the dataset used for training. Training a 
network with multiple datasets on different substrates increased the generalization of a network, but decreased the 
performance compared to a network trained with a single combination of substrate and color management settings. 
Reducing the number of color patches as well as reducing the number of light sources influenced the performance of 
a network negatively, but still leads to decent results. 
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1. Introduction and context

This article is part of a project that aims to digi-
tize cultural heritage items. The digitization system 
used implements the 3D scanning method of struc-
tured light. During a structured light scan, a projec-
tor projects a series of light patterns onto the scene 
while a camera captures these patterns. This series 
of patterns results in a unique code for each pixel of 
the projector. As the camera captures the patterns, 
each of its pixels corresponds to a pixel of the pro-
jector. A 3D point of the scene is triangulated based 
on these correspondents and the known position 
and orientation of the camera and the projector �
(Drouin and Beraldin, 2020). To obtain a colorized 3D 
scan each 3D point is assigned to an RGB triplet cap-
tured by the used camera.

The main idea of the mentioned project is to use a 
neural network and specific hardware (a camera and 

a projector) to reconstruct the spectral reflectance of a 
scene point based on RGB triplets captured under dif-
ferent light sources. As a colorized 3D scan processes 
the same RGB triplets, the reconstruction of the spec-
tral reflectance leads to a multispectral 3D scan. This 
article represents the first step to realize this concept. 
As a 3D scene adds complexity to the problem, e.g. 
interreflections, this research reduces the problem to a 
2D space and uses a typical scenario from the printing 
industry. It centers on the reconstruction of the spec-
tral reflectance of color patches printed by a UV-curing 
digital printer. The neuronal network will be able to 
predict the spectral reflectance for each pixel of an 
RGB image of a print. This opens new ways to proof 
the accuracy of a print or a specific part of a print, e.g. 
during production.

The idea to use neural networks to reconstruct the 
spectral reflectance of a scene is not new. In the past 
years, three competitions on spectral reconstruc-
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tion from RGB images have been conducted (Arad, et 
al., 2018; 2020; 2022). The datasets used for training 
consist of hyper spectral images showing a diverse 
set of scenes captured with a mobile hyperspectral 
camera in several (not specified) environments. A 
simulated camera pipeline transforms the multispec-
tral images to RGB images. The pipeline implements 
the spectral response of a real camera, automated 
exposure determination, noise, image signal pro-
cessing and image compression for the JPEG format. 
Arad, et al. (2018; 2020; 2022) briefly describe the 
best performing approaches for each year. Zhang, �
et al. (2022) offer a detailed insight and categorization 
of several approaches based on the same or similar 
datasets. Simplified, due to the used datasets, most of 
the approaches presented are based on convolutional 
neural networks (CNN) or generative adversarial 
networks (GAN), that process the image as a whole. 
Therefore, the resulting networks perform well recon-
structing the spectral reflectance of a whole scene, 
including interreflections. Due to interreflections and 
the diverse dataset, a network trained based on printed 
color patches with no interreflections should perform 
better in the specific scenario of this research.

Lazar, Javoršek and Hladnik (2020) follow a contrary 
approach. They use 1 031 Munsell matte patches as 
the foundation of their dataset. Each is measured by a 
spectrophotometer at five different points. The average 
of the five measurements equals the spectral reflec-
tance of the patch. To obtain the corresponding RGB 
triplets a digital camera captures each patch under 
constant lighting conditions (3 019 K). The median 
RGB triplet of the inner 50 % of the pixels represent 
the RGB triplet of the corresponding patch. A densely 
connected feed forward network with one hidden layer 
is trained using the dataset. As such networks tend to 
find a local minimum of the cost function instead of the 
global minimum, each training is repeated 41 times. 
Lazar, Javoršek, and Hladnik (2020) suggest that the 
performance of the best network (with 96.2 % of the 
predicted reflectance resulting in a ΔE00 < 3.0) could be 
enhanced by increasing the number of hidden layers 
and the number of RGB triplets per patch, using mul-
tiple cameras with different spectral responses. Lazar 
and Hladnik (2023) proof this assumption to be correct.

The described approach is close to the approach of 
this research. However, the first difference is the use of 
printed color patches instead of Munsell patches. While 
Munsell patches are predefined, printing gives freedom 
to define a dataset regarding the used halftone values 
and the number of patches. The disadvantage is, that 
the range of spectra is limited by the gamut of the used 
printer. The second difference is the use of multiple 
light sources instead of multiple cameras to enhance 
the number of RGB triplets. Both approaches follow 

the same principal. In this article the light source is 
changed due to the given hardware. Furthermore, using 
multiple cameras will lead to registering issues when 
predicting the spectral reflectance for a whole image.

2. Methods

2.1 Mathematical background and main research 
workflow

A camera captures the light reflected from a point in 
a scene and converts it into a triplet of red, green, and 
blue color values. The resulting triplets depend on the 
spectral distribution of the light source, the spectral 
reflectance of the material of the scene point, and the 
characteristics of the RGB filters used in the camera 
(Park, et al., 2007) (Equation 1).
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where LS(λ) is the spectral power distribution of the 
light source, pxK is the k-th color channel of a pixel, 
β(λ) is the spectral reflectance of a scene point, and CK 
is the spectral response of the camera for k-th color 
channel.

Assuming the spectral distribution of the light source 
LS(λ) and the spectral response of the camera C are 
measured in discrete steps and the unknown spec-
tral reflectance β(λ) is discrete as well, the integral 
in Equation 1 reduces to a summation as shown in 
Equation 2. The use of multiple light sources leads 
to a linear equation system as shown in Equation 3. 
Equation 4 shows Equation 3 in matrix notation. To 
compute the spectral reflectance, the inverse of the 
matrix LSC is multiplied to both sides of Equation 4 
leading to Equation 5. Solving Equation 5 leads to the 
unknown spectral reflectance.

In general, the use of multiple light sources ensures 
that the LSC is a square matrix and therefore invert-
ible. In the optimal case, a monochromatic grayscale 
camera K = [gray] captures the patches, and the 
number of light sources n equals the number of meas-
urement points in the discrete spectra m. The dis-
crete spectral distribution of each light source is 1 at 
one measurement point (or wavelength) and 0 at the 
others and has no overlap with the other light sources. 
Consequently, the spectral distribution of LSj = 1  is �
[1, 0, …, 0] and the spectral distribution of LSj = m is �
[0, 0, …, 1]. This means that LSC is a diagonal matrix 
and easy to invert. Using a camera with multiple color 
channels (e.g. K = [R, G, B)] would reduce the number 
of necessary light sources n according to Equation 6.
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Where� i� is� the� i-th� point� in� the� discrete� spectrum�
[1 ; m],� j� is� the� j-th� light� source� [1 ; n],�K� is� the� color�
channel�[R,G,B]�or�monochromatic�[gray],�nchannels�rep-
resents�the�number�of�color�channels,�β�is�the�discrete�
spectral�reflectance�of�the�patch,�C�is�the�discrete�spec-
tral�response�of�the�camera,�LS�is�the�discrete�spectral�
distribution�of�the�light�source,�and�px�is�a�pixel�vector.

In�practice,�using�these�equations�has�disadvantages.�
All� variables,� except� the� spectral� reflectance,� has� to�
be�known.�While�measuring�the�spectral�distribution�
of�each�light�source�would�be�relatively�easy,�measur-
ing�the�spectral�response�of�a�camera�would�be�more�
complex.�Furthermore,�Equation�1�neglects�the�camera�
pipeline�processing� of� the� captured�data� to� an�RGB�

image.�For�most�consumer�cameras�these�pipelines�are�
black�boxes,�but�have� to�be�known�to�reproduce� the�
spectral�reflectance.�
A�neural�network�can�be�trained�to�approximate�these�
equations� including�the�spectral�distributions�of� the�
light�sources�and�the�spectral�response�of�the�camera.�
Furthermore,�a�neural�network�can�approximate�those�
equations�with�less�light�sources�than�determined�by�
Equation�6.�A�set�of�RGB�triplets�captured�under�dif-
ferent� light� sources� and� the� corresponding� spectral�
reflectance�would�be�sufficient.�Therefore,�obtaining�
these�datasets�is�the�main�task�alongside�training�and�
evaluating� the� neural� network.� Figure� 1� shows� the�
main�research�workflow�and�the�performed�processes.

Each� process� is� assigned� to� one� of� the�main� fields�
namely� the� datasets,� the� capturing� device� and� the�
neural�network.�The�datasets�field�deals�with�building�
the� sets� of�RGB� triplets� and� corresponding� spectral�
reflectance�used�to�train,�validate�and�test�the�neural�
network.�The�first�processes�are�to�define�the�halftone�
values�of�the�color�patches�(Section�2.4.1)�and�to�print�
these� patches� on� charts� using� different� parameters�
(Section�2.4.2).�The�results�are�four�printed�datasets.�
For�each�printed�dataset�each�color�patch�is�measured�
by�a�spectrophotometer�to�obtain� its�spectral�reflec-
tance� (Section� 2.4.2).� The�obtained�data� is� reorgan-
ized�in�an�array�for�further�processing�(Section�2.4.3).�
Parallel,� the�color�charts�are�placed� into� the�captur-
ing�device�(Section�2.4.4)�for�being�captured�(Section�
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2.4.5) The capturing device field has two main pro-
cesses that interacts with each other. The calibration 
process starts with printing a calibration chart (Section 
2.4.6). The calibration chart is given to the capturing 
process. During capturing the calibration chart is illu-
minated by a light source emitted by a projector and an 
RGB camera captures an image of the illuminated chart. 
As long as the current light source is not the last one it 
is changed to the next one. At the end, an RGB image of 
the calibration chart is captured for each light source. 
The capturing process, returns these images to the 
calibration process which determines the position and 
dimension of each patch in the image (Section 2.4.6) 
and computes a factor for each patch to correct uneven 
illumination (Section 2.4.8). The calibration result is 
stored for later use.

The prepared color charts run through the same cap-
turing process as the calibration chart. The resulting 
images are returned to the extract RGB triplets process 
in the dataset field. This process extracts an RGB triplet 
for each color patch and light source (Section 2.4.7) 
using the information gathered during calibration. The 
results are reorganized into an array following the same 
order as the corresponding spectral reflectance array.

The two arrays represent the RGB triplets and the 
corresponding spectral reflectance of one dataset. In 
the next process each dataset is divided into a train-
ing, validation and test subset (Section 2.5). The train-
ing and validation subsets are set as input (RGB) and 
target (spectral reflectance) data for the first process 
concerning the neural network. The starting weights 
of the network are randomized followed by the actual 
training of the network. As the starting weights highly 
influence the training outcome, the randomization and 
training are repeated several times (Section 2.6). When 
the last training run is finished, the test subset is used 
to evaluate the trained networks (Section 2.7). Based on 
the results, the best performing network is chosen. This 
network can be used to predict the spectral reflectance 
for each pixel of an RGB image of a sample printed and 
captured with the same parameters as the dataset used 
for training.

By varying parameters of this workflow, this article 
examines the performance of a neural network depend-
ing on the use of different datasets (Section 3.1), 
regarding its generalization capabilities (Section 3.2), 
depending on the size of the dataset (Section 3.3) and 
the number and combination of the light sources used 
(Section 3.4).

2.2 Software and frameworks

Adobe InDesign (Adobe Inc., 2023) version 18.1 was 
used to create the printing files for the datasets. The 

raster image processor software VersaWorks (Roland 
Digital Group Corporation, 2023) version 6.18.1.1 
was used to prepare the datasets for printing espe-
cially in terms of color management. The framework 
gPhoto2 version 2.5.28 (gPhoto, 2022) was used on 
a Raspberry PI 4b to programmatically trigger the 
camera to capture the color charts and to control 
camera parameters like ISO, shutter speed and aper-
ture. OpenCV for Python version 4.51.48 (Bradski, 
2000) was used to open, save and convert images. 
It was also used to detect the position and dimen-
sion of color patches in images. The framework will 
be referred as cv2 in the following. Numpy version 
1.21.4 (Harris, et al., 2020) was used to prepare, store, 
and process the created data. The framework will be 
referred as np in the following. Keras version 2.10 as 
part of TensorFlow version 2.10.1 (TensorFlow, 2023) 
was used to build, train and evaluate the neural net-
works in this paper. The framework colour-science 
version 0.4.1 (Mansencal, et al., 2022) was used to 
transform spectra to CIEXYZ (ISO, 2020b), RGB and 
CIELAB (ISO, 2020c). Each color transformation in this 
paper used the color matching functions of the CIE 
1931 2° Standard Observer (ISO, 2020a) and D50 (ISO, 
2022a) as illuminant. In addition, transformations 
from spectra to RGB use Aces2065 as color space. 
Furthermore, colour-science was used to visualize the 
CIE 1976 UCS (ISO, 2023) chromaticity diagrams and 
to compute the CIE DE00 (ISO, 2022b) color difference 
between predicted and measured spectral reflectance.

2.3 Hardware

The flatbed printer RolandDG VersaUV LEF-300 
(firmware 2.80) was used to print the datasets. The 
printer was equipped with ECO-UV-4 UV-curing 
inks. Besides cyan, magenta, yellow and black the 
printer is able to print white. It will be referred as 
LEF300 printer in the following. A Konica Minolta 
Auto Scan Spectrophotometer FD9 was used to 
obtain the spectral reflectance of the printed color 
charts. It will be referred as FD9 spectrophotome-
ter in the following. A Canon EOS M50 MK2 (firm-
ware 1.0.3) digital camera equipped with a Canon 
EF-M 28MM F/3.5 MACRO IS STM lens and a polariz-
ing filter was used to capture the color charts. It will 
be referred as M50 camera in the following. During �
capturing the Texas Instruments DLP LightCrafter 
Display 230NP EVM projector served as adjustable 
light source. Its relevant components are an Osram KR 
CSLNM1.23_EN red LED, an Osram KP CSLNM1.F1_EN 
green LED and an Osram KB CSLNM1.14_EN blue LED, 
that define the spectral distribution of the emitted 
light. A polarizing filter was installed in front of its lens. 
The projector will be referred as DLP projector in the 
following. A RaspberryPI 4b was used to programmati-
cally control the M50 camera and the DLP projector. 
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2.4 Obtaining the datasets

2.4.1 Defining the color patches

A total of 10 800 color patches were defined, whereby 
400 were combined into one color chart. To reach a suf-
ficient variance of colors chart 27 represents primary 
colors (cyan, magenta, yellow) as well as black with 
opacities from 1 % to 100 % ascending 1 % per step. 
Charts 1 to 3 represent secondary colors (red, green, 
and blue) where opacity of one primary color ascends 
in 5 % steps from 5 % to 100 % per row while opacity 
of the other primary color ascends per column. Charts 
24 to 26 each combine one primary color with black 
following the same principle. The remaining charts �
(4 to 23) represent tertiary colors. Therefore, opacity 
of magenta ascends per row and opacity of cyan 
ascends per column while opacity of yellow ascends 
per chart in 5 % steps from 5 % to 100 % (Figure 2). The 
background of each chart was set to 4C black (cyan, 
magenta, yellow, black) with an opacity of 100 %. The 
export function in InDesign creates the printable pdf. 
During creation any color transformation processes 
were deactivated and no color profile was embedded.

2.4.2 Printing the color patches and obtaining their 
spectral reflectance

The datasets were printed by the LEF300 printer on 
Clairfontaine DCP 1849C paper. To obtain four differ-
ent datasets each chart was printed four times with 
different parameters. In the RIP software VersaWorks 
LEF300EcoUV4_Generic_v720x720.icc delivered by 
Roland DG was set as device color profile for all data-
sets. The CMYK simulation target profile and the 
matching method was set to PSOCoated_v3.icc and col-
orimetric for the first three datasets. The first dataset 
was directly printed on the substrate. From here on 
this dataset will be referred as ‘p’ (for paper). As the 
substrate includes optical brighteners the second 
dataset aims to eliminate their influences. Therefore, 
one layer of 100% 4c black (cyan, magenta, yellow and 
black) is printed to block these influences. Three layers 
of white were printed on top followed by the actual 
color charts. This dataset will be referred as ‘1x’ (1 = 
one layer of color, x = blocked substrate). Printing the 
third dataset followed the same procedure except that 
the color charts were printed with 200% instead of 

100% opacity (setting) by setting the overprint param-
eter in VersaWorks to 2. This dataset will be referred 
as ‘2x’. The fourth dataset was also directly printed 
on DCP 1849C paper but with the CMYK simulation 
target profile set to RolandWideGamut2_CMYK.icc. 
This dataset will be referred as ‘pw’ (for paper wide 
gamut). Figure 3 shows the mentioned profiles in com-
parison. While the LEF300 profile represents the print-
able gamut of the printer, the simulation target profile �
PSOcoated_v3 limits its gamut. RolandWideGamut2_
CMYK includes the complete gamut of the LEF300-
printer and, therefore, does not limit the printable 
gamut.

 
Figure 3: CIE 1976 UCS chromaticity diagrams of the 

ICC profiles used for printing

�
The spectral reflectance of each patch was measured 
by the FD9 spectrophotometer using the measure-
ment modes M0, M1 and M2. The spectral reflectance 
was measured from 380 nm to 730 nm in 10 nm steps. 
Figure 4 visualizes the datasets in the CIE 1976 UCS 
chromaticity diagram. For an analytical comparison 
Figure 5 shows the DE00 differences between every 
pair of datasets.

�

 

Figure 2: The 10 800 color patches on 27 charts
Figure 4: CIE 1976 UCS chromaticity diagrams  

of the datasets
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The color patches of ‘p’ and ‘pw’ are the closest to 
each other. Accordingly, the gamut of the LEF300 is 
the closest to the one of the PCOcoated_v3 profile. The 
difference between ‘p’ and ‘1x’ is explainable as ‘1x’ is 
printed on top of one layer of black and three layers of 
white and therefore on another substrate. The dataset 
‘2x’ has the most difference from the other as each 
color patch is printed with 200% opacity. Therefore, 2x 
is more saturated, which widens the gamut especially 
in red, but also limits the gamut in blue.

2.4.3 Organizing the spectral reflectance in arrays

After measuring, the spectral reflectance values of the 
color patches of a dataset were stored in several csv 
files. Before this data can be used for training they will 
be reorganized in np.arrays. Therefore, for each chart 
the corresponding csv files were opened by calling 
np.genfromtxt() with the delimeter set to ‘,’ and unpack 
set to false. As the csv files contains more information 
than needed, the resulting array was reduced to the 
spectral reflectance. This information was stored into 
one array for each chart. Each array has a shape of 400 
by 36. Each row represents one color patch while each 
column represents its spectral reflectance at the corre-
sponding wavelength.

To gather the spectral reflectance of a complete dataset 
the spectral reflectance arrays of the corresponding 
charts were combined to a single array. The combined 
spectral reflectance array has a shape of 10 800 by 36. 
The patches order in this array is ascending by chart 
and per chart ascending by row and then ascending by 
column. So, the first row in the array represents the 
patch at the first row and first column of the first chart 
while row 431 in the array represents the patch at the 
second row and eleventh column of the second chart.

2.4.4 The capturing device

As mentioned in the introduction, the capturing 
device is a prototype of a 3D scanning system. The 
housing of the system has the dimensions of 520 𝗑 300 
𝗑 300 mm. It is enclosed to lock out extraneous light. �

On the inside the walls are matte black to reduce inter-
nal light scattering. The M50 camera and the DLP pro-
jector have a fixed position next to each other on the 
right side of the box, facing in the direction of the wall 
on the left site. In the center of this wall is a mount to 
place a color chart (Figure 6).

Ideally the DLP projector would illuminate the chart 
at an angle of 45 degree to the camera to avoid reflec-
tions. Unfortunately, the angle is limited by the 3D 
scanning method and the space. To compensate this 
issue, a polarizing filter in front of the projector serves 
as polarizer while a polarizing filter in front of the 
camera serves as analyzer. As polarizer and analyzer 
were aligned perpendicular to each other, reflections 
were minimized during capturing (Figure 7).

 

Figure 7: A chart illuminated by white light captured 
with a) the analyzer aligned parallel to the polarizer 

and b) the analyzer aligned perpendicular to the 
polarizer

2.4.5 Capturing the charts

To capture a chart, it has to be placed into the mount. 
As the substrate printed on is relatively flexible, the 
chart had to be stiffened. Therefore, each color chart 
was applied onto white cardboard. Furthermore, each 
chart had to be divided into four parts (chart parts) to 
completely fit into the illuminated area (Figure 8). 

When the first chart part was placed into the mount, 
the DLP projector illuminated it subsequently with-

Figure 5: Probability that the color difference between 
corresponding color patches of two different datasets is 

less than a certain DE00 value
Figure 6: The capturing device with a mounted and red 
illuminated chart on the left and the DLP projector and 

M50 camera on the right
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white, red, green, blue, cyan, magenta and yellow 
lights, which can be seen as seven different light 
sources. With each light source the M50 camera cap-
tured an image of the illuminated chart part. When 
finished, part two to part four of the same chart were 
captured by following the same procedure. So, each 
chart part is present in seven images corresponding to 
the different light sources (Figure 9).

Figure 9: Example of a series of images showing color 
chart 12 part 1 (dataset ‘pw’) �

�
This procedure was repeated for each color chart 
part of each dataset. The resulting images were 
stored for further processing. Regarding the set-
tings the M50 camera is set to manual control to 
avoid changing settings due to automated pro-
cesses. The white balance was set to 5 000 K. The 
file format for the images was JPEG and the embed-
ded color space was Adobe RGB 1998. Aperture 
was set to 14, while shutter speed was set to �
1 second and ISO was set to 100. Regarding the DLP 
projector the brightness was set to maximum, while 
the LEDs were directly controlled using the API pro-
vided by Texas Instruments. 

2.4.6 Determining the positions and dimensions of 
the patches in an image of a chart part

To complete the datasets RGB triplets for each color 
patch had to be extracted from the captured images. 
Therefore, the positions and dimensions of the 
colored patches in the images had to be determined. 
To easily determine position and dimension of each 
patch despite their changing colors and contrasts to 
the background, a chart part consisting of only white 
colored patches was used. The white patches have 
a high contrast to the black background which eases 
contour detection. In the following this chart part will 
be referred as calibration chart. As each colored chart 
part was captured at the same position as the calibra-
tion chart, the determined positions and dimensions 
of the white patches could be used to extract RGB tri-
plets for each patch on every chart part. 

The calibration itself started with capturing the cali-
bration chart resulting in seven images (Section 2.4.5). 
The calibration chart image illuminated by white 
light were loaded as grayscale image by calling cv2.
imread() with the option cv2.IMREAD_GRAYSCALE 
(Figure 10a). Calling cv2.threshold() with a threshold 
of 100, a maximum value of 255 and the type-variable 
set to cv2.THRESH_BINARY_INV converted the gray-
scale image into an inverted binary image (Figure 10 
b). To remove smaller black parts in the background 
and smaller white parts in the black patches cv2.mor-
phologyEx() was called with morphological operation 
set to cv2.MORPH_CLOSE and a 5𝗑5  matrix filled with 
ones used as kernel (Figure 10c). These preparations 
optimized the image for calling cv2.findContours() 
with mode set to cv2.RETR_TREE and method set to 
cv2.CHAIN_APPROX_SIMPLE. Figure 10d shows the 
detected contours. To remove false detections, con-
tours with an area (cv2.contourArea()) smaller than 
20 000 pixels and greater than 1 000 000 pixels were 
filtered out. Finally, each contour was simplified to a 
rectangle (cv2.boundingRect()) defined by its position 
in the image (x, y) and its width and height. This infor-
mation can be used to find the color patches in each 
image of a chart part.

2.4.7 Extracting RGB triplets from chart part captures

With the gathered positions and dimensions of each 
patch in the calibration chart each pixel of each patch 
in the colored chart parts is addressable. The RGB tri-
plets of all pixels of a patch was reduced to a single 
RGB triplet. Therefore, each rectangle describing a 
patch (Section 2.4.6) was shrunk to half its size. Its 
position was corrected so that the rectangle is cen-
tered on the corresponding patch. The average of the 
RGB triplets of the pixels framed by a rectangle rep-
resented the RGB triplet of the corresponding color 
patch. Figure 11 visualizes the extracted information 
for the calibration chart.

As each color patch was present in seven images cor-
responding to the seven light sources, seven RGB tri-
plets had to be extracted for each color patch. As the 
extraction was done per chart part, the results were 
gathered and sorted according to the sorting of the 

Figure 8: The images of the four chart parts of chart 1 
(dataset ‘pw’) illuminated by white light

Figure 10: The process of detecting the contour of the 
color patches: (a) the image of the calibration chart as 
grayscale image: (b) the image of the calibration chart 
transformed to binary image: (c) the binary image with 

less noise: (d) the detected contours
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spectral reflectance array (Section 2.4.3). The result-
ing np.array had a shape of 10 800 by 21, where each 
row represented a color patch and each column rep-
resented a channel of an extracted RGB triplet (Rwhite_ls, 
Gwhite_ls, Bwhite_ls, …, Ryellow_ls, Gyellow_ls, Byellow_ls).

2.4.8 Correcting unevenly distributed illumination

The extracted RGB triplets in Figure 11 also showed 
that the illumination was uneven. Although, all patches 
had the same color with the same spectral reflectance 
the corresponding RGB triplets differ. The minimum 
values are min(R) = 194, min(G) = 216, min(B) = 218 
while the maximum values are max(R) = 210, 
max(G) = 227, max(B) = 227. To compensate this error 
for each patch (i) of the calibration chart and each 
channel of its extracted seven RGB triplets (Kccij) 
corresponding to the seven light sources (j) a correc-
tion factor fijK was computed according to Equation 
7. These factors were stored in an np.array. During 
extraction (Section 2.4.7) these factors were applied 
to the corresponding extracted values according to 
Equation 8.

[7]K � �
KijK

ij

ccf
cc

=

�[8]
Kcrrij ij ijK f K=

where Kcrrij is the corrected value for K, fijK is the cor-
rection factor, i is the number of patch in a chart part 
[0 ; 100], j is the illumination (white, red, green, blue, 
cyan, magenta, yellow), K is the extracted K value 

(RGB) of a patch of a color chart, Kcc is the extracted 
K value of a patch of the calibration chart and Kcc is 
the average of extracted K values of the patches of the 
calibration chart.

2.5 Splitting the datasets for training, validation 
and evaluation

Each dataset had to fulfill three purposes. The first 
purpose is to train the neural network while the 
second one is to validate the network during training. 
The third purpose is to test and evaluate the trained 
network. It is crucial that data used for training is not 
used for either validation or evaluation, which leads to 
three subsets. Due to the tests in this article further 
requirements had to be considered. Firstly, the patches 
of the subsets had to be equally distributed to repre-
sent a wide range of color combinations and to prevent 
a network to be biased to specific colors (for example 
reddish colors). Secondly, the subsets had to contain 
the same patches for each dataset. This enables to 
compare the performance of networks based on differ-
ent datasets. It also enabled to test the performance 
of networks trained with a training subset of one 
dataset when evaluated with a test subset of another 
dataset. Thirdly, the training subset had to be reduced 
systematically. This enabled to test the performance 
of a network in dependence on the size of the training 
subset.

To select equally distributed color patches to form the 
subsets, three cases had to be considered. While the 
primary colors were distributed linearly, the secondary 

Figure 11: Exemplary RGB triplet extraction for color patches of the calibration chart with white illumination: in the 
top left of each patch is its number; the rectangle marks the extraction area while r, g, and b are the extracted 

values and ID describes the patch identity defined by the chart number (here w for white), row and column on the 
undivided chart
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Colors were distributed squarely and the tertiary colors 
were distributed cubically (Section 2.4.1). For each of 
these three cases, a step value was calculated according 
to Equation 9, where the splitting factor was the portion 
of patches of the dataset. The step value defined the 
step between color patches in each dimension. In the 
case of linear distribution, every step-th color patch was 
used for a subset as the color itself only changed in one 
dimension. In the case of squared distribution, every 
step-th color patch (respectively column) from every 
step-th row of the corresponding chart was part of the 
subset as one primary color changed per row and the 
other per column. In the case of cubic distribution, one 
primary color changed per row, the second per column, 
and the third per chart. Therefore, from every stepth 
chart, every step-th color patch from every step-th row 
was selected.

[9]( )
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= =

where step determines the frequency of selected 
patches (every step-th patch is included in the subset), 
fsplit represents the splitting factor [0.0 ; 1.0] and d indi-
cates the number of dimensions [1 ; 3]

In the best-case step is a natural number that directly 
points to the color patches to select. But it is more likely 
that step is a rational number. In that case the decimal 
part of step equaled an error variable and step was 
rounded off by calling np.floor(). The rounded off step 

was used to select the first color patch (or row, column 
or chart depending on the number of dimensions). For 
the distance between the last selected and the next 
color patch the current error was added to step. After 
that the decimal part again equaled the current error 
and step was rounded off. This process visualized for 
the linear, squared and cubic case in Figures 12 to 14. As 
a result, the error was minimized during selection.

For the test subset, the splitting factor was set to 0.2, 
and the color patches were selected as described. 
Depending on the test performed, the splitting factor for 
the training subset varied. For the main tests, it was set 
to 1.0. To ensure that each color patch appeared in only 
one subset, all color patches present in both the test and 
training subsets were deleted from the training subset. 
Afterwards, the subsets were shuffled by calling np.ran-
dom.shuffle() with the seed fixed at 19840924. The 
splitting factor for the validation subset was set to 0.1. 
Unlike before, for the validation subset, the first n color 
patches in the shuffled training subset were extracted, 
where n was calculated according to Equation 10. The 
resulting subsets for the case described above are visu-
alized in Figure 15. Table 1 shows the dataset shares of 
the subsets corresponding to the previously mentioned 
splitting factors.

[10]( )ts plit�fsn ceil N=

where n is the number of patches extracted from training 

Figure 12: Subset color patch selection in case of linear distribution (primary colors)

Figure 13: One dimension of the subset color patch selection in case of squared distribution (secondary colors)

Figure 14: One dimension of the subset color patch selection in case of cubic distribution (tertiary colors)
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subset,�Nts is�the�number�of�patches�in�the�training�subset�
and�fsplit�is�the�splitting�factor�for�validation�[0.0 ; 1.0]

Figure 15: Exemplary RGB-value

Table 1: Splitting factors and resulting dataset shares 

Training Validation Testing

Splitting�factor 1.00 0.10 0.20
Dataset�share�[%] 70.88 7.88 21.24
Number�of�patches 7 655 851 2 294

2.6 Parameters of the neural network

The� neural� network�was� a� densely� connected� feed�
forward� network.� It� had� one� input� layer� (keras.�
Input()),� three� hidden� layers� (keras.layers.Dense())�
and�one�output�layer�(keras.layers.Dense()).�Its�input�
layer�had�21�Neurons�corresponding�to�the�seven�RGB�
triplets�of�a�color�patch�captured�under�seven�differ-
ent�light�sources.�Its�output�layer�had�36�neurons�rep-
resenting� the� spectral� reflectance�of� the� same�color�
patch�at�wavelengths�from�380 nm�to�730 nm�in�10�nm�
steps.�Its�first�hidden�layer�had�180�neurons,�its�second�
hidden�layer�had�80�neurons�and�its�third�hidden�layer�
had�40�neurons.�The�rectified�linear�unit�function�was�
the� activation� function�of� all� neurons� in� the�hidden�
layers,�while�the�sigmoid�function�was�the�one�of�the�
neurons� in�the�output� layer.�During�training�the� loss�
between� the� measured� and� the� predicted� spectral�
reflectance�was�was�determined�by�the�mean�squared�
error�(MSE)�using�keras.losses.�MeanSquaredError()�
with�reduction�set�to�auto�and�the�other�parameters�set�
to�default.�The�ADAM�(Adaptive�Moment�Estimation)-
algorithm�(Kingma�and�Ba,�2017)�(tf.keras.optimizers.�
Adam())�minimized�the� loss�during�training�with� its�
learning� rate� set� to� 0.001� and� its� other� parameters�
set�to�default.�A�training�ran�for�a�maximum�of�2 000�
epochs�with�a�batch�size�of�32.�Training�was�stopped�
if�the�validation�loss�was�not�decreasing�for�50�epochs.�
In� the� case� of� an� early� stop� the� best�weights�were�
restored� (tf.keras.callbacks.EarlyStopping()� with�
monitor�set�to�‘val_loss’,�patience�set�to�50,�mode�set�to�
‘min’�and�restore_best_weights�set�to�true).

Before�training�the�RGB�triplets�of�the�subsets�(Section�
2.5)�were�normalized�by�dividing�by�255.�The�spectral�
reflectance�values�of�the�subsets�were�reduced�to�those�
obtained�with�measurement�mode�M2.�The�training�

Figure 16: Range of the performance of 40 trainings 
using the same parameters and dataset

was�started�by�calling�keras.model.fit()�with�the�RGB�
triplets� and� the� spectral� reflectance� of� the� training�
subset�set�as�x�and�y,�the�validation�subset�used�as�vali-
dation�data�and�the�other�values�set�as�mentioned.

At� the� start� of� training,� the�weights� of� the� neurons�
were� set� randomly.� These� starting� weights� mainly�
influenced�the�training�outcome�and�therefore�the�per-
formance�of�a�trained�network.�Figure�16�showed�the�
range�of�probability�density�functions�(Section�2.7)�of�
40�trainings�using�the�same�parameters�and�dataset.�
Due� to� the� randomly� chosen� starting� weights,� the�
performance�of� the� trained�networks�varied.�During�
pre-testing,�40� trainings�were� found� to�be�sufficient�
to� cover� the� entire� performance� range� (which�was�
close�to�the�41�repetitions�used�by�Lazar,�Javoršek,�and�
Hladnik�(2020)).

2.7 Evaluation and visualization of the training 
results

To�evaluate�a�trained�network�or�model,� it�predicted�
spectral�reflectance�from�the�RGB�triplets�of�the�test�
subset.�The�predictions�were�compared�to�the�meas-
ured�spectral�reflectance�using�two�metrics.�The�first�
one�was�the�MSE�between�the�predicted�and�the�meas-
ured�spectral�reflectance,�which�also�is�the�loss�func-
tion�during�training.�Therefore,� the�model�should�be�
optimized�to�this�metric.�The�second�and�mainly�used�
metric� is� the�CIEDE2000� (DE00)� color� difference.� To�
compute�the�difference,�the�predicted�and�correspond-
ing�measured�spectral�reflectance�were�transformed�to�
the�CIELAB�color�space�(Section�2.2).�

These�metrics�were� computed� for� each� color� patch�
of�the�test�subset.�To�analyze�the�performance�of�the�
model�as�a�whole,�mean,�median,�standard�deviation,�
minimum�and�maximum�of�these�metrics�were�com-
puted�(Tables�2�and�3).

For�further�visualization�the�DE00�metric�is�used�exclu-
sively.�To�visualize�the�model�performance�as�a�whole�
a� generalized� gamma�distribution� (Stacy,� 1962)�was�
fitted� to� the�DE00� values.� Therefore,� the�DE00� values�
of�the�color�patches�were�sorted�ascending�by�calling�
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np.sort(). Calling scipy.stats.gengamma.fit() returned 
the shape parameters a and c as well as the scale and 
the location defining the fitted distribution. Calling 
scipy.stats.gengamma.pdf() with these parameters 
returns the probability density function (PDF) of the 
DE00-values (e.g. Figure 17). Integrating the PDF on the 
intervals [0.0; 1.0[, [1.0; 2.0[ and [2.0; 3.0[ leads to the 
probability that the color difference lies within these 
intervals (see Table 2).

The PDF visualizes the model performance regarding 
the DE00 values for the whole test subset of a dataset. 
Furthermore, PDFs are used to visualize the perfor-
mance of different models in comparison (see Figure 17). 

A model with a higher and narrower density peak posi-
tioned further left performs better than a network with 
a lower and wider density peak located further right. 
The legend in Figure 17 shows the PDFs were sorted 
descending by their probability to predict a spectral 
reflectance that leads to a DE00 less than 1.0.

Regarding the naming each model is assigned to an id. 
The id consists of the year, month, day, hour, minute and 
second the training was started. For the PDFs the id is 
followed by abbreviation of the dataset used for train-
ing. In Tables 2–5, 9 and 10 the same dataset can be find 
in the ‘DS’ (dataset) column.

3. Results and discussion

3.1 Model performance depending on dataset and 
measurement mode

Therefore, out of the 40 training runs for each dataset 
the model with the highest probability to predict a 
spectral reflectance leading to a DE00 between 0.0 
and 1.0 was chosen as the best performing model. 
Training with the ‘pw’ dataset resulted in the best 

performing model regarding DE00 (Table 2, Figure 17) 
and MSE (Table 3) followed by training with the ‘p’ 
dataset. Regarding DE00 the model trained with the ‘1x’ 
dataset performed better than the one trained with 
the ‘2x’ dataset (Table 2, Figure 17). Regarding MSE 
the model trained with ‘2x’ performed better than the 
one trained with ‘1x’ (Table 3). Due to blocking the 
optical brighteners during printing (Section 2.3.2) the 
M2 (UV-cut filter) measurement mode used for train-
ing (Section 2.6) should have less influence on the ‘1x’ 
and ‘2x’ datasets than on the ‘p’ and ‘pw’ datasets. To 
evaluate the influence of the measurement mode on 
the model performance, the test was repeated with the 
‘1x’ and ‘pw’ dataset. This time the spectral reflectance 
was obtained using measurement modes M0 and M1. 
Notation wise the dataset name was complemented by 
the measurement mode used; e.g. for ‘pw-M0’ meas-
urement mode M0 was used to obtain the spectral 
reflectance of the ‘pw’ dataset. The resulting models 
were compared to the best performing model so far 
(20231027075227). 

Changing the measurement mode changes the 
outcome of the training as well. While for ‘pw’ meas-
urement mode M2 continued to lead to the best per-
forming model, for ‘1x’ M1 leads to the best model 
(20231122000640) regarding both DE00 and MSE 
(Tables 4 and 5, Figure 18). The probability to predict 
a spectral reflectance leading to a DE00 less than 1.0 
increased from 0.897 (Table 2) with measurement 
mode M2 to 0.922 (Table 4).

In conclusion, the color management settings, the sub-
strate and the measurement mode of the spectropho-
tometer used influence the performance of a model. 
The ‘pw’ trained model seems to perform slightly 

better than the ‘p’ trained one because of using a 
wider CMYK simulation target profile (Section 2.4.2). 
The same color management settings in combination 

Table 2: The ΔE00 statistics of the best performing models sorted descending by prob.[0;1[

Model id DS Mean Median StD Min. Max. Prob.[0;1[ Prob.[1;2[ Prob.[2;3[

20231027075227 pw 0.515 0.461 0.280 0.035 2.246 0.938 0.061 0.001
20231006161556 p 0.528 0.479 0.286 0.048 2.177 0.930 0.068 0.001
20231025122410 1x 0.582 0.527 0.318 0.012 2.153 0.897 0.100 0.004
20231026133808 2x 0.737 0.629 0.474 0.030 4.120 0.778 0.201 0.018

Table 3: The MSE statistics of the best performing models sorted ascending by mean

Model id DS Mean Median StD Min. Max.

20231027075227 pw 1.35     6.81 𝗑 10-6 2.23 𝗑 10-5 3.50 𝗑 10-7 3.81 𝗑 10-4

20231006161556 p 1.38 𝗑 10-5 7.41 𝗑 10-6 2.12 𝗑 10-5 5.79 𝗑 10-7 2.91 𝗑 10-4

20231026133808 2x 1.41 𝗑 10-5 8.12 𝗑 10-6 1.81 𝗑 10-5 4.43 𝗑 10-7 2.45 𝗑 10-4

20231025122410 1x 1.53 𝗑 10-5 9.95 𝗑 10-6 1.95 𝗑 10-5 4.99 𝗑 10-7 3.84 𝗑 10-4
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Table 4: The ΔE00 statistics for testing the influence of the measurement modes 

Model id DS Mean Median StD Min. Max. Prob.[0;1[ Prob.[1;2[ Prob.[2;3[

20231027075227 pw-M2 0.515 0.461 0.280 0.035 2.246 0.938 0.061 0.001
20231118093723 pw-M0 0.535 0.486 0.285 0.054 2.833 0.931 0.067 0.001
20231122000640 1x-M1 0.546 0.489 0.297 0.027 1.918 0.922 0.076 0.006
2023120001333 pw-M1 0.551 0.502 0.296 0.034 2.845 0.922 0.076 0.001
2023119062028 1x-M0 0.566 0.508 0.318 0.030 3.016 0.905 0.092 0.002

Table 5: The MSE statistics for testing the influence of the measurement modes

Model id DS Mean Median StD Min. Max.

20231027075227 pw-M2 1.35 𝗑  10-5 6.81 𝗑  10-6 2.23 𝗑  10-5 3.50 𝗑  10-7 3.81 𝗑  10-4

20231122000640 1x-M1 1.45 𝗑  10-5 9.84 𝗑  10-6 1.46 𝗑  10-5 4.50 𝗑  10-7 1.75 𝗑  10-4

20231119062028 1x-M0 1.56 𝗑  10-5 1.05 𝗑  10-5 1.67 𝗑  10-5 6.04 𝗑  10-7 2.10 𝗑  10-4

20231118093723 pw-M0 1.60 𝗑  10-5 8.67 𝗑  10-6 2.80 𝗑  10-5 6.26 𝗑  10-7 5.75 𝗑  10-4

20231120001333 pw-M1 1.99 𝗑  10-5 9.51 𝗑  10-6 5.73 𝗑  10-5 8.32 𝗑  10-7 1.66 𝗑  10-3

Figure 17: The DE00 PDFs of the best performing model 
from each dataset in comparison (ascending sorted by 

Prob.[0;1[ in legend)

Figure 18: The DE00 PDFs of the model performance 
depending on the measurement mode

Figure 19: The ΔE00 PDFs of all models evaluated with 
the ‘p’ test subset

Figure 20: The ΔE00 PDFs of all models evaluated with 
the ‘pw’ test subset

Figure 22: The DE00 PDFs of all models evaluated with 
the ‘2x’ test subset

Figure 21: The DE00 PDFs of all models evaluated with 
the ‘1x’ test subset
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with the different substrates ‘p’ and ‘1x’ are printed 
on cause the performance of the ‘1x’ trained model 
to decrease in comparison. The performance of a ‘2x’ 
trained model seems to decrease because of the 200% 
opacity (Section 2.4.2) compared to a ‘1x’ trained one. 
The performance of a ‘1x’ trained model increases 
when using measurement mode M1 instead of M2, 
seemingly, because these measurement modes deal 
differently with the fluorescence of ink and substrate. 
In theory, each of these assumptions should not influ-
ence the training of a neural network as long as the 
RGB triplets correlates well with the corresponding 
spectral reflectance. So, the final assumption is that 
the different datasets influence this correlation. Within 
the scope of this work the exact reasons are not clear 
and should be topic of further investigation. 

3.2 Model generalization

This test examineed if a model is specialized on 
the dataset used for training or if it is generalized. 
Therefore, each model determined in 3.1 was eval-
uated with the test subsets of the datasets that are 
not related with its training. Furthermore, the data-
sets weree combined to train more generalized 
models. So, the training subsets of all datasets were 
combined to one training subset (‘cb’ for combined). 
The second combined training subset (‘cb2’) did not 
include the ‘2x’ training subset. Regarding the nota-
tion for the PDF, the first subset is the subset the 
model was trained with followed by ‘E’ (for evaluate) 
as divider and then by the subset used for evalua-
tion. So, ‘pwE1x’ shows the performance of a model 
trained with ‘pw’ and evaluated with the test subset 
of ‘1x’.   Due to the number of models (26) the sta-
tistics were reduced to two values for each test and 
training subset combination. The two values are 
the mean DE00 with its added standard deviation �
(Table 6) and the probability that that the DE00 of a 
sample is less than 3.0 (Table 7).

In general, the performance of a model went down 
if the test subset was from another dataset than the 
training subset. Figures 19 to 22 each show the PDFs 
of the models evaluated with one test subset. For both 
test subsets ‘p’ (Figure 19) and ‘pw’ (Figure 20) the 

models trained with ‘1x’ and ‘2x’ performed the worst 
with a mean DE00 with its added standard deviation �
between 4.042 and 6.450 (Table 6)  and a probabil-
ity between 0.032 and 0.482 that a prediction results 
in a DE00 less than 3.0 (Table 7). The corresponding 
PDFs have a noticeably lower peak located far right 
from the other PDFs (Figures 19 and 20). The test 
subsets ‘1x’ (Figure 21) and ‘2x’ (Figure 22) each have 
two PDFs with similar characteristic correspond-
ing to the models trained with ‘pw’ and ‘p’. While 
the mean DE00 with its added standard deviation �
range between 3.926 and 6.741 (Table 6) is close to 
before, the probability that a prediction leads to a 
DE00 less than 3.0 between 0.137 and 0.528 (Table 7) 
is slightly better. The common property between ‘1x’ 
and ‘2x’ which differs from the common property of 
‘p’ and ‘pw’ is the substrate. In contrast, the datasets 
‘p’ and ‘1x’ as well as ‘pw’ and ‘1x’ are closer to each 
other than ‘1x’ and ‘2x’ (Figure 5). This observation 
lead to the assumption that accuracy of the predic-
tion of a model increases if the sample is printed on 
the same substrate. 

Overall, the non-combined datasets (‘p’, ’pw’, ’1x’, ’2x’) 
have an average mean DE00 with its added standard 
deviation between 3.103 and 4.228 (Table 6). The two 
models trained with a combination of all datasets on 
the other hand perform noticeable better with an 
average mean DE00 with its added standard deviation �
of 1.868 for ‘cb’ and 2.629 for ‘cb2’. The probability to 
predict a spectral reflectance resulting in DE00 less 
than 3.0 is between 0.928 and 0.994 for ‘cb’. As ‘cb2’ 
does not include the ‘2x’ training subset the proba-
bility decreases from 0.928 to 0.425 for the ‘2x’ test 
subset compared to ‘cb’ (Table 7). The probability for 
the other test subsets increases slightly from 0.974 to 
0.977 for ‘1x’, 0.978 to 0.987 for ‘p’ and 0.994 to 0.997 
for ‘pw’. 

In conclusion, training with a combination of multi-
ple training subsets leads to a generalized model. If 
a single subset is neglected during training, the per-
formance of the corresponding test subset decreases 
significantly more than the performance increases for 
the other test subsets. Furthermore, the performance 
of the generalized models decreases compared to the 

Table 6: The mean ΔE00  added by the standard 
deviation of training and test subset combinations

Test 1x 2x p pw cb cb2

1x 0.900 3.365 4.337 3.926 1.840 1.795
2x 5.062 1.211 6.741 6.365 2.450 5.984
p 4.491 6.450 0.814 1.325 1.764 1.563
pw 4.042 5.885 1.362 0.795 1.419 1.175
avg. 3.624 4.228 3.314 3.103 1.868 2.629

Table 7: Probability that the ΔE00 of a sample is less 
than 3.0 

Test 1x 2x p pw cb cb2

1x 1.000 0.755 0.385 0.528 0.974 0.977
2x 0.608 0.997 0.137 0.228 0.928 0.425
p 0.307 0.032 1.000 0.997 0.978 0.987
pw 0.482 0,078 0.997 1.000 0.994 0.997
avg. 3.624 4.228 3.314 3.103 1.868 2.629
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performance�of�a�model�trained�and�evaluated�with�
the�subsets�of�the�same�dataset.

3.3 Decreasing size of the training subset

This� test� examines� the� performance� of� a� model�
depending�on�the�size�of�the�training�subset.�Therefore,�
the� ‘pw’�dataset� that� results� in� the�best�performing�
model�(Section�3.1)�is�used�for�training.�The�size�of�the�
training�subset�is�decreased�from�70 %�of�the�size�of�
the�dataset�down� to� 10 %� in� 10 %-steps�by� reducing�
the�splitting�factor�of�the�training�subset�(Section�2.5).�
Due�to�the�reduction�logic�a�splitting�factor�of�0.7�does�
not�equal�a�share�of�70%�of�the�dataset.�The�used�split-
ting�factors�and�the�resulting�shares�of�the�dataset�are�
shown�in�Table�8.�The�dataset�name�is�complemented�
by�‘R’�(for�reduction�test)�followed�by�the�correspond-
ing�splitting�factor�in�percentage.

With� the� decreasing� size� of� the� training� subset� the�
peaks� of� the� corresponding� PDFs� flatten� out� and�
shift�to�the�right�indicating�a�decreasing�performance�
(Figure�23).�If�the�number�of�color�patches�is�reduced�
from�7507�(pwR89)�to�1070�(pwR15)�the�probability�to�
predict�a�spectral�reflectance�that�leads�to�an�error�less�

than�3.0�DE00�decreases�slightly�from�1.0�to�0.997.�If�a�
DE00�less�than�1.0�is�needed�the�probability�drops�from�
0.933�to�0.754�(Table�9).�The�expected�error�range�lies�
between�0.231�and�0.817�DE00�for�a�training�subset�size�
of�7507�color�patches.�This�range�extends�to�a�range�
from�0.301� to� 1.251�DE00� if� the� training�subset� size� is�
reduced�to�1 070�color�patches�(Figure�24).�In�conclu-
sion,�the�performance�of�a�model�decreases�with�the�
size�of�the�training�subset.

3.4 Number and combination of light sources

This� test� examined� the�performance�of� a�model�de-�
pending�on� the�number� and�different� combinations�
of� light�sources.�Therefore,� the�RGB�triplets�(Section�
2.4.7)�were�reduced�and�recombined.�The�tested�light�
sources� are�white� (W),� a� combination�of� red,� green�
and�blue�(RGB)�and�a�combination�of�cyan,�magenta�
and�yellow�(CMY).�Using� two�complementary�colors�
should,� in�theory,�cover�the�whole�spectrum�with�no�
overlaps.�That�leads�to�the�combination�of�red�and�cyan�
(RC),� green�and�magenta� (GM)�and�blue�and�yellow�
(BY).� To� test� if� more� overlapping� colors� influence�
the� performance� a� combination� of� cyan� and� yellow�
(CY)�was�added.�For�comparison�the�best�performing�

Table 8: Splitting factors of training subsets and resulting dataset share

0.15 0.25 0.39 0.52 0.71 0.80 0.89

Dataset�share�[%] 9.91 19.86 29.76 39.38 50.62 60.21 69.51
n-patches�train 1 070 2 145 3   �  214 4 253 5 467 6 503 7 507
n-patches�validation 119 239 358 473 608 723 835

Table 9: The ΔE00 statistics of the models with reduced size of the training subset

Model id DS Mean Median StD Min. Max. Prob.[0;1[ Prob.[1;2[ Prob.[2;3[

2023111145455 pwR89 0.524 0.469 0.293 0.018 2.931 0.933 0.066 0.001
2023111011123 pwR80 0.551 0.504 0.298 0.011 2.693 0.921 0.077 0.001
20231109211733 pwR71 0.579 0.524 0.302 0.050 2.857 0.907 0.091 0.001
20231109024923 pwR52 0.601 0.534 0.343 0.021 3.433 0.882 0.114 0.003
20231108163826 pwR39 0.621 0.562 0.339 0.024 3.322 0.872 0.124 0.003
20231106043622 pwR25 0.729 0.639 0.440 0.015 4.815 0.789 0.196 0.013
20231107221515 pwR15 0.776 0.679 0.475 0.052 5.504 0.754 0.225 0.018

Figure 23: The ΔE00  PDFs of the models trained with 
reduced training subsets

Figure 24: The ΔE00  means depending on the size 
of the training subset
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model� from� Section� 3.1� (20231027075227)�was� used�
as� it� combines� all� seven� light� sources� (WRGBCMY).�
Therefore,�the�other�models�were�trained�and�evalu-
ated�using�the�‘pw’�dataset.�In�Figure�25,�the�PDF�with�
the�highest�peak�located�the�furthest�left�corresponds�
to�the�combination�of�all�light�sources�followed�by�the�
PDF�of� the�CMY� trained�model.� It� is�noticeable,� that�
the�PDFs�of�the�models�trained�with�the�light�source�
combinations�CY,�BY,�RGB,�GM�and�RC�are�close�to�each�
other�whereby�the�PDF�of�CY�has�a�slightly�higher�peak�
located�more�left�(Figure�25).�The�PDF�with�the�lowest�
peak�located�the�furthest�right�corresponds�to�the�W�
trained�model.�The�results�indicate�that�the�model�per-
formance� increases�with� the� spectral�overlap�of� the�
light�sources�used.

As�long�as�two�light�sources�were�used�for�training�the�
probability�that�the�prediction�leads�to�an�error� less�
than�3.0�DE00�was�at�least�0.999�(Table�10).�If�a�DE00�less�
than�1.0� is�needed� the�probability�was�at� least�0.814�
(Table�10).�In�the�case�of�a�single�white�light�source�the�
3.0�DE00�probability�was�0.993�while�the�1.0�DE00�prob-
ability�was�0.68�(Table�10).�Finally,�Figure�26�shows�a�
multispectral�image�of�a�print�processed�by�a�model�of�
this�paper.�It�has�to�be�mentioned,�that�the�accuracy�of�
this�prediction�was�not�tested.�This�is�something�to�be�
done�in�the�future.�

4. Conclusion

In�summary,�the�results�show�that�a�neural�network�
can� be� used� to� predict� the� spectral� reflectance� of�
prints�with�at�least�acceptable�tolerance.�In�practice�
it�will�be�useful�to�have�a�more�generalized�network.�
Therefore,�one�should�gather�similar�substrates�with�
similar� color� management� settings� in� groups� and�
train�a�network�for�each�group.�Capturing�thousands�
of� color� patches� takes� time� (in� this� paper� approx-
imately�3�hours�per�dataset).� If�necessary� this� time�
can� be� reduced� by� reducing� the� number� of� light�
sources�and�the�number�of�color�patches.�Reducing�
the�number�of�color�patches�and�light�sources�will�not�

Table 10: The ΔE00 statistics of the models trained with different light sources 

Model id DS Mean Median StD Min. Max. Prob.[0;1[ Prob.[1;2[ Prob.[2;3[

20231027075227 WRGBCMY 0.515 0.461 0.280 0.035 2.246 0.938 0.061 0.001
20231207114655 CMY 0.569 0.502 0.321 0.028 2.213 0.902 0.096 0.004
20231213171513 CY 0.640 0.565 0.367 0.030 3.312 0.853 0.140 0.001
20231212090246 BY 0.660 0.584 0.375 0.044 2.744 0.839 0.154 0.003
20231205190528 RGB 0.669 0.598 0.387 0.025 3.104 0.832 0.159 0.007
20231210141326 GM 0.681 0.612 0.388 0.037 3.887 0.827 0.164 0.007
20231208225150 RC 0.697 0.611 0.401 0.038 3.668 0.814 0.176 0.009
20231203213010 W 0.878 0.749 0.580 0.048 5.265 0.680 0.278 0.035

Figure 25: The ΔE00 PDFs of the models trained 
with different light sources

Figure 26: The print illuminated by the seven light sources (top) and the spectral reflectance predicted by the 
network of this paper (bottom). The printed image is part of the Image Quality Testform Package (Fogra, 2024).
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