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1.  Introduction

In the development of rotary presses, two lines of 
development can be identified. The first line is very 
fast-running machines. These must have only very small 
longitudinal register errors and must not show dou-
bling under any circumstances (Brandenburg, 2000). 
The lateral register errors, however, are of secondary 
importance. These requirements were met by each 
printing unit being driven by a single drive that is 
digitally controlled. Numerous tests and simulations 
were necessary to master such a system with “elec-
tronic shaft” in practice (Brandenburg, et al., 1999). 
The simulations required mathematical models of the 
moving web and the individual electric drives. These 
tools only became available after the development of 
powerful computers. The second line of development 
is much newer. This involves the production of mul-
ti-layer printed circuit boards for later assembly with 
electronic components. In addition to the longitudi-
nal register error, the lateral register error is also of 
utmost importance for these slow-running machines. 
The lateral register error must be smaller by a factor 
of 10 than for the former machines. The moving elastic 
web can be represented by the well-known mathemat-
ical model of the so-called mass flow (Kang 2010; Kang, 
Lee and Shin, 2011).

1.1  State of the art

The treatment of the register error in the longitudinal 
direction of the web, the so-called longitudinal register 

error, has been completed theoretically and to a large 
extent experimentally, as exemplified by the publica-
tions of Brandenburg (1976a; 1976b; 1976c; 2011; 2015), 
Brandenburg and Tröndle (1976a; 1976b), and Tröndle 
(1973).

Concerning the lateral register error, H. K. Kang has 
made a comprehensive contribution (Kang, 2010; Kang, 
Lee and Shin, 2011). He has investigated a rotogravure 
press that can be used to produce printed circuits 
“from roll to roll.” He developed a mathematical model 
of lateral register error and verified it experimentally, 
showed the coupling between longitudinal and lateral 
register error, and investigated numerous variants for 
controls. 

In the present paper, however, the model from 
Brandenburg and Klemm (2019) is used, which was 
originally derived only for constant web velocity. This 
is extended by linearization to variable web veloci-
ties. From this, a calculation rule for the lateral regis-
ter error is derived for the first time. Further theory 
is restricted to a Bernoulli web, i.e. narrow webs with 
the ratio L/b ≥ 10 (with the length L and the width b). 
For these, it can be shown that the web equations for 
lateral motion and those for mass flow (continuity 
equation) are only slightly coupled. Furthermore, it can 
be stated that there is hardly any difference between 
the continuity equation in longitudinal transport direc-
tion x, and in lateral transport direction, y. This makes 
it possible for the first time to represent the lateral and 
longitudinal register errors with the longitudinal mass 
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flow equations in a joint block diagram, thus provid-
ing a comprehensive plan of the system for simulation 
purposes. 

2.  Lateral register error at constant web speed

Let the three-roller system with rollers 1, 2, and 3 as 
shown in Figure 1 be given. These are three printing 
units that are in synchronism and print three colors or 
layers on a substrate congruently on top of each other. 
The travelling web is a Bernoulli web and is at first 
assumed to be transported at the constant web speed v. 
It is assumed at roller 1 that the web experiences an 
input disturbance in the form of an input displacement  
yE1(t) or/and a change in the input angle θE1(t).
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y E1
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Figure 1: Three-roller system with input offset 
and input angle change at roller 1 

(Brandenburg and Klemm, 2019, Figure 5.5)

2.1  Definition of the lateral register error

If a lateral web deflection yE2(t) is caused at roller 2 as a 
result of a disturbance at roller 1, then, since the synchro-
nism of the printing units is maintained, and the lon-
gitudinal change in web elongation is negligibly small, 
the lateral register error (LRF) Yy,E2(t) is directly given 
by this web deflection. Thus, the definition equation is

Yy,E2(t) = yE2(t) [1]

In the s-domain it reads

Yy,E2(s) = yE2(s) [2]

To calculate the LRF, the time tL,12 is important, which a 
point needs to travel the length L12. As is known, this is 
the time constant 

tL,12 = T12 = L12/v [3]

An important tool for the mathematical description of 
the lateral motion of the web is the block diagram of 
Figure 2, which was first developed in Brandenburg 
and Klemm (2019).

2.2  Register error at input displacement and 
input angle change

The input displacement yE1 is assumed to be a step 
function at the time t = tp1, the printing time of printing 
unit 1 (DW 1). This means that there is a lateral register 
error which is transported with the web and reaches 
roller 2 after the run time T12

Yy,E2(t) = yE1(t − T12) [4]

In the s-domain, this equation reads as follows

Yy,E2(s) = e−T12 s yE1(s) [5]
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Figure 2: Block diagram of the lateral web motion at constant velocity 
according to Brandenburg and Klemm (2019, Figure 5.12)
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However, the input displacement also triggers an 
immediate lateral transient f (1)[yE1(t)], which leads to 
an additional LRF at roller 2. Then the total LRF at 
roller 2 is given by 

𝑌𝑌!,#$
(&) (𝑡𝑡) = 𝑦𝑦#&(𝑡𝑡 − 𝑇𝑇&$) + 𝑓𝑓(&)[𝑦𝑦#&(𝑡𝑡)]  [6]

In the s-domain this equation is

𝑌𝑌!,#$
(&) (𝑠𝑠) = 𝑒𝑒()!"*𝑦𝑦#&(𝑠𝑠) + 𝜙𝜙(&)[𝑦𝑦#&(𝑠𝑠)]  [7]

Since the Bernoulli web obeys the block diagram of 
Figure 2, the following relationship is valid

𝜙𝜙(")[𝑦𝑦$"(𝑠𝑠)] = 𝐴𝐴"%(𝑠𝑠)𝑦𝑦$"(𝑠𝑠)  [8]

If a change of the input angle θE1(t) simultaneously 
occurs, this triggers a transient

𝑌𝑌!,#$
($) (𝑠𝑠) = 𝑒𝑒'(!")𝜃𝜃#*(𝑠𝑠) + 𝜙𝜙($)[𝜃𝜃#*(𝑠𝑠)]  [9]

which is to be added to Equation [7]

𝑌𝑌!,#$
(&'$)(𝑠𝑠) = 𝑒𝑒)*!"+𝑦𝑦#&(𝑠𝑠) + 𝜙𝜙(&)[𝑦𝑦#&(𝑠𝑠)] + 𝑒𝑒)*!"+𝜃𝜃#&(𝑠𝑠) + 𝜙𝜙($)[𝜃𝜃#&(𝑠𝑠)]  [10]

  𝑌𝑌!,#$
(&'$)(𝑠𝑠) = 𝑒𝑒)*!"+𝑦𝑦#&(𝑠𝑠) + 𝜙𝜙(&)[𝑦𝑦#&(𝑠𝑠)] + 𝑒𝑒)*!"+𝜃𝜃#&(𝑠𝑠) + 𝜙𝜙($)[𝜃𝜃#&(𝑠𝑠)]  

The result is

𝑌𝑌!,#$
(&'$)(𝑠𝑠) = 𝜙𝜙(&)[𝑦𝑦#&(𝑠𝑠)] + 𝜙𝜙($)[𝜃𝜃#&(𝑠𝑠)] + [𝑦𝑦#&(𝑠𝑠) + 𝜃𝜃#&(𝑠𝑠)]𝑒𝑒)*!"+  [11]

  𝑌𝑌!,#$
(&'$)(𝑠𝑠) = 𝜙𝜙(&)[𝑦𝑦#&(𝑠𝑠)] + 𝜙𝜙($)[𝜃𝜃#&(𝑠𝑠)] + [𝑦𝑦#&(𝑠𝑠) + 𝜃𝜃#&(𝑠𝑠)]𝑒𝑒)*!"+  

From the block diagram of Figure 2, the complete lat-
eral register error at constant web speed then follows 
to be

𝑌𝑌!,#$
(&'$)(𝑠𝑠) = 𝐴𝐴&$(𝑠𝑠)𝑦𝑦#&(𝑠𝑠) + 𝐴𝐴&$(𝑠𝑠)𝐵𝐵&$(𝑠𝑠)𝜃𝜃#&(𝑠𝑠) + [𝑦𝑦#&(𝑠𝑠) + 𝜃𝜃#&(𝑠𝑠)]𝑒𝑒)*!"+  [12]

  𝑌𝑌!,#$
(&'$)(𝑠𝑠) = 𝐴𝐴&$(𝑠𝑠)𝑦𝑦#&(𝑠𝑠) + 𝐴𝐴&$(𝑠𝑠)𝐵𝐵&$(𝑠𝑠)𝜃𝜃#&(𝑠𝑠) + [𝑦𝑦#&(𝑠𝑠) + 𝜃𝜃#&(𝑠𝑠)]𝑒𝑒)*!"+  

This entire register error is simply called Yy,E2

𝑌𝑌!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃#%(𝑠𝑠) + [𝑦𝑦#%(𝑠𝑠) + 𝜃𝜃#%(𝑠𝑠)]𝑒𝑒&'!"(   [13]

 𝑌𝑌!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃#%(𝑠𝑠) + [𝑦𝑦#%(𝑠𝑠) + 𝜃𝜃#%(𝑠𝑠)]𝑒𝑒&'!"(  

This Equation [13] reads in words: Both input varia-
bles, yE1(s) and/or θE1(s) immediately result in a lateral 
register error at roller 2 for t > tp1. At the same time, 
however, they are also printed by printing unit 1 at the 
time t = tp1, transported by the web and do not reach 
roller 2 until the transport time T12 has elapsed. 

According to Brandenburg and Klemm (2019, section 
5.2.6), the transfer functions A12(s) and B12(s) are gen-
erally given by 

𝐴𝐴!,!#$ =
1

𝑇𝑇(!,!#$)
'

𝑓𝑓((!,!#$)
𝑠𝑠' + 𝐾𝐾)((!,!#$)𝑇𝑇(!,!#$)𝑠𝑠 + 1

 

 

[14]

𝐵𝐵(","$%) =
𝑢𝑢(","$%) − sinℎ( 𝑢𝑢(","$%))

𝑆𝑆(","$%)
𝐾𝐾'((","$%)𝐿𝐿(","$%)  [15]

and are specifically for i = 1 and i + 1 = 2 in system 1–2

𝐴𝐴!" =
1

𝑇𝑇!""
𝑓𝑓#!"

𝑠𝑠" + 𝐾𝐾$#,!"𝑇𝑇!"𝑠𝑠 + 1
  [16]

𝐵𝐵!" =
𝑢𝑢!" − sinℎ( 𝑢𝑢!")

𝑆𝑆!"
𝐾𝐾#$,!"𝐿𝐿!"  [17]

From Equation [17] it can be seen that B12 contains the 
factor L12 which provides dimensional correctness. It 
would have been more clever to use a function 

𝐵𝐵!"∗ =
𝐵𝐵!"
𝐿𝐿!"

=
𝑢𝑢!" − sinℎ( 𝑢𝑢!")

𝑆𝑆!"
𝐾𝐾$%,!"  [18]

in order to make the dimensional correctness visible 
by the term 𝐵𝐵!"∗ 	𝐿𝐿!" . But Equation [13] is maintained in 
the above form because of earlier publications. 

3.  Lateral and longitudinal register error at 
variable web strain and web speed as well 
as at input changes

3.1  Lateral register error 

In order to treat variable web velocities and web 
strain, the system equations have to be linearized. 
Since Equation [13] is a linear relation, it is also valid 
for small deflections from the steady state (marked by 
a tilde)

𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃#%(𝑠𝑠)]𝑒𝑒&'!"(   [19]

 𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃#%(𝑠𝑠)]𝑒𝑒&'!"(  

the time constant of the web can be assumed to be 
constant because of the only small changes in web 
velocity. That a steady state with stationary deflection 
and stationary angle exists is proved for the Bernoulli 
web using the equations of the two-mass system in 
Brandenburg and Klemm (2019, Equation [4.38]), for 
y0 = ŷ0 = ŷE1 . The stationary deflection is

lim
!→∞

	𝑦𝑦#$(𝑡𝑡) = lim
%→&

	𝑦𝑦#$(𝑠𝑠) = 𝑦𝑦+#'  [20]

From Brandenburg and Klemm (2019, Equations [4.61] 
and [4.65]) the stationary web angle is calculated to be
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lim
!→∞

	𝑦𝑦#$(𝑡𝑡) = lim	
%→&

𝑦𝑦#$(𝑠𝑠) =
𝑢𝑢 − sin ℎ(𝑢𝑢)

sin ℎ(𝑢𝑢) − 𝑢𝑢 cos ℎ(𝑢𝑢)
𝐾𝐾'(𝐿𝐿𝜃𝜃5)* =

𝑢𝑢 − sin ℎ(𝑢𝑢)
𝑢𝑢[cos ℎ(𝑢𝑢) − 1]

𝐿𝐿𝜃𝜃5#* 

 

 [21]

  lim
!→∞

	𝑦𝑦#$(𝑡𝑡) = lim	
%→&

𝑦𝑦#$(𝑠𝑠) =
𝑢𝑢 − sin ℎ(𝑢𝑢)

sin ℎ(𝑢𝑢) − 𝑢𝑢 cos ℎ(𝑢𝑢)
𝐾𝐾'(𝐿𝐿𝜃𝜃5)* =

𝑢𝑢 − sin ℎ(𝑢𝑢)
𝑢𝑢[cos ℎ(𝑢𝑢) − 1]

𝐿𝐿𝜃𝜃5#* 

 

 

  lim
!→∞

	𝑦𝑦#$(𝑡𝑡) = lim	
%→&

𝑦𝑦#$(𝑠𝑠) =
𝑢𝑢 − sin ℎ(𝑢𝑢)

sin ℎ(𝑢𝑢) − 𝑢𝑢 cos ℎ(𝑢𝑢)
𝐾𝐾'(𝐿𝐿𝜃𝜃5)* =

𝑢𝑢 − sin ℎ(𝑢𝑢)
𝑢𝑢[cos ℎ(𝑢𝑢) − 1]

𝐿𝐿𝜃𝜃5#* 

 

 

Thus, the linearization is justified. Then the equations 
for further systems 2–3 and 3–4 read

𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃"#%(𝑠𝑠)]𝑒𝑒&'!"(  [22]

 𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃"#%(𝑠𝑠)]𝑒𝑒&'!"(  

and

𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃"#%(𝑠𝑠)]𝑒𝑒&'!"(  [23]

 𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃"#%(𝑠𝑠)]𝑒𝑒&'!"(  

3.2  Longitudinal and lateral register error due to 
input displacement

The question is now whether there is a relationship 
between lateral and longitudinal register error. For this 
purpose, Figure 3 is discussed. 

2p R2y

l12
x

2

vc1 vc2

1

2(tp1)

2(tp1)
1(tp1)

1(tp1)

yE1(tp1)

1(tp2)

vc1 vc2

1

1

xB1(tp2) Yx

t = tp2

t = tp1

Yy

Figure 3: Part of three-roller system with input offset 
and input angle change at roller 1, 

from Brandenburg and Klemm (2019, Figure 5.5)

At the printing time t = tp1, a step function of the input 
displacement yE1(tp1) is assumed. With this lateral regis-
ter error (LRF), the first print unit DW 1 prints the point 
“1“, symbolically written in the form 1(tp1) in Figure 3. In 
the top view of Figure 3, two points at the edge of the 
web are chosen: A black point means that this one will 
be printed, a white one means that this one will not be 
printed. It is now arbitrarily assumed that point 1 at the 
printing time t = tp2 = tp1 + T12 of DW 2, does not exactly 
reach the assigned point of DW 2, but lies somewhat 
behind or in front of it (as is drawn in Figure 3). So 
at the time t = T12 there is also a longitudinal register 
error Yx,E2. Now, however, the described lateral dynamic 
process was triggered at the same time by the input 
displacement, which at the time tp2 = tp1 + T12 causes the 
lateral register error Yy,E2. Thus, the longitudinal and 
lateral register errors are coupled with each other at 
any time. Of course, this does not mean that a lateral 
register error will cause a longitudinal one. A longitu-
dinal register error can be added at some time during 
an “ongoing” lateral dynamic process.

3.3  Mathematical formulations

The linearized longitudinal register error obeys in the 
s-domain the long-known relation

𝑌𝑌"!,#$(𝑠𝑠) = [−𝜀𝜀%̃$(𝑠𝑠) + 𝑒𝑒&'!"(𝜀𝜀)̃%(𝑠𝑠)] 
v
s

 [24]

In Equation [24], the first term in the square brackets 
describes all points (1) that are already located in the 
web section 1−2 when the transient starts, while the 
term𝑒𝑒!"!"#𝜀𝜀$̃%(𝑠𝑠) describes those points (2) that enter 
at DW 1 for t ≥ 0 and arrive at DW 2 after the transport 
time T12 has elapsed. For the linearized lateral register 
error 𝑌𝑌"!,E$ the above given Equation [19] is valid.

In order to mathematically describe the coupling of 
longitudinal and lateral register error, the following 
assumptions are made:

• The longitudinal web deflection, which occurs in 
x-direction, and the lateral web deflection, which 
occurs in y-direction, are treated separately.

• The lateral movement caused by the input displace-
ment does not cause any strain in the x-direction.

If both simultaneously occurring register errors were 
present in the time domain, then both expressions 
would have to be added in the entire time domain for 
the same point in time, respectively. The correspond-
ing mathematical formulation is:

Given Yx,12 = f(t) and Yy,12(t). The inverse function of Yx,12 
is: t = g(Yx,12). This time is inserted into Yy,12(t). Then the 
total function, i.e. the total register error, follows to be

𝑌𝑌!,#$(𝑡𝑡) = 𝑌𝑌!,#$&𝑔𝑔(𝑌𝑌%,#$(𝑡𝑡))*  [25]
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By this transformation the same time was determined 
for both parts. This requires that the functions can be 
reversed analytically. When assessing the significance 
of this number, it must be taken into account that both 
errors lie in the same plane, namely the web plane, but 
are perpendicular to each other. 

In the s-domain, the function pair of Equation [19]

𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃#%(𝑠𝑠)]𝑒𝑒&'!"(  [26]

 𝑌𝑌"!,#$(𝑠𝑠) = 𝐴𝐴%$(𝑠𝑠)𝑦𝑦)#%(𝑠𝑠) + 𝐴𝐴%$(𝑠𝑠)𝐵𝐵%$(𝑠𝑠)𝜃𝜃"#%(𝑠𝑠) + [𝑦𝑦)#%(𝑠𝑠) + 𝜃𝜃#%(𝑠𝑠)]𝑒𝑒&'!"(  

and Equation [24]

𝑌𝑌"!,#$(𝑠𝑠) =
�̄�𝑣
𝑠𝑠
[−𝜀𝜀%̃$(𝑠𝑠) + 𝑒𝑒&'!"(𝜀𝜀)̃%(𝑠𝑠)]  [27]

describes both register errors in parameter represen- 
tation. Parameter is the operator s.

In Figure 4, the block diagram is drawn, which illus-
trates the interaction of lateral and longitudinal register 
error according to Equations [29] and [28] for a three-
roller system. The upper chain shows the lateral regis-
ter error 𝑌𝑌"!,E$ ,, the lower chain the longitudinal register 
error 𝑌𝑌"!,E$ . It can be seen that both register errors are 
linked to the mass flow chain. The name “multi-layer 
model” is introduced for this system plan.

The upper system for lateral motion and the lower 
one for longitudinal motion can be excited and simu-
lated completely independently of each other, i.e. for 
any time points 𝑦𝑦"E"(𝑡𝑡 = 𝑡𝑡") ,𝜃𝜃"!"(𝑡𝑡 = 𝑡𝑡#) and 𝑇𝑇!"∗ (𝑡𝑡 = 𝑡𝑡$) . 
However, to illustrate the two-dimensional register 
errors 𝑌𝑌"(!","$%), one time point t1 = t2 = t3 has to be cho-
sen. Since both register errors are perpendicular to 
each other, it is proposed to represent the quantities
𝑌𝑌"!,E$  and 𝑌𝑌"!,E$ as components of vectors

𝑌𝑌"#⃑!,#$ = 𝑌𝑌"!,#$𝑒𝑒!  [28]

and

𝑌𝑌"#⃑!,#$ = 𝑌𝑌"!,#$𝑒𝑒!  [29]

Where e⃑ x and e⃑ y are the unit vectors in x- and y-direc-
tions. The sum vector, i.e. the vector of the total register 
error, is then given by

𝑌𝑌"#⃑!,#$ = 𝑌𝑌"#⃑%,#$ + 𝑌𝑌"#⃑&,#$ = 𝑌𝑌"%,#$𝑒𝑒% + 𝑌𝑌"&,#$𝑒𝑒&  [30]

During a dynamic process, this vector changes its mag-
nitude and angle while the web is running. 

In the block diagram of Figure 4, the following three var-
iables appear as independent input variables: the input 
displacement and the input angle of the web as well as 
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Figure 4: Total system diagram: interaction of lateral and longitudinal register errors (multi-layer model); 
all variables are small deviations from steady state
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the change in tensile force at the input of the mass flow 
chain. They are defined to be “main input variables”, 
because they can excite all three layers. The circum-
ferential speeds of the rollers, however, are assigned 
to the corresponding time lags of the mass flow chain.

Thus, this multi-layer model, together with corre-
sponding simulations, allows quantitative predictions 
about the dynamics of all system variables. The retro-
active effect of forces on lateral web motion and the 
lateral register errors was neglected. If this simplifica-
tion is admissible must be justified in the specific case 
(Brandenburg and Klemm, 2017).

4.  Conclusion

The multi-layer model in Figure 4 represents the over-
all system of lateral and longitudinal register errors 
and the mass flow chain. This study clearly shows the 
interaction of important influencing variables that 
make visible the behavior of the information printed 
on the web and the associated errors. From the point 
of view of control technology, this system representa-
tion offers the possibility of using simulations to test 
and quantitatively assess the control performance 
and in particular the behavior in relation to numerous 
disturbances.
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List of symbols

If x is a variable, x̄ denotes the steady state and x̃ a small deviation of this variable from the steady state. Some 
of the chosen formula symbols follow directly from the context and explain themselves.

A12 Transfer function according to Equations [14] and [16]
B12 Transfer function according to Equations [15] and [17]
e Base of the natural logarithm
e⃑x Unit vector in x-direction (longitudinal direction), Eq. [28]
e⃑y Unit vector in y-direction (lateral direction), Equation [29]
g(Yx,12(t)) Inverse function of Yx,12(t) according to Equation [25]
s Operator of Laplace transform
T12 Time constant of web section 1−2 according to Equation [3]
T(i,i+1) Time constant of section i, i + 1
T*

(i,i+1) Web force of section i, i + 1 
v Speed of the web in x-direction
vci Circumferential speed of a roller 

(= substitute quantity for the transport speed of a printing unit acting on the web i)
v̄ Average transport velocity according to Equation [24]
𝑌𝑌"#⃑!,E$ Longitudinal register error in vector notation, Equations [28] and [29]
𝑌𝑌"#⃑!,E$ Lateral register error in vector notation, Equation [29]
YS,Ei Sum of lateral and longitudinal register error (see Equation [30] and Figure 4) 
Yx,Ei Longitudinal register error at the input roller i according to Equation [24]
Yy,Ei Lateral register error at the input roller i according to Equation [1]
yEi Input displacement at roller i (cf. Figure 1)
ε(i,i+1) Strain in the free web section i, i + 1
θEi Input angle at roller i (cf. Figure 1)
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