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1.  Introduction

Offset printing industries face lots of problems because 
of variations in ambient conditions and therefore, it 
is necessary to maintain a standard ambient condi-
tion of machine surroundings. The offset inks of all 
colors are also sensitive to temperature and relative 
humidity. In offset printing ink flows from the ink con-
tainer to the inking system through the annular space 
between a series of rollers and for this co-axial cylin-
der viscometer can be chosen as a model where flow 
of non-Newtonian fluids is in between two concentric 
cylinders. But in offset printing machines, the rollers 
are not concentric where the radius of the outer cyl-
inder or roller is treated as infinity. Rollers in the ink-
ing system are mainly rotated via gears and a wet ink 
film is formed by hydrodynamic effect generated from 
relative motions of the contacting rollers. The contact 
surface is nearly non-heavy load linear contact friction, 
so it may be considered as generalized elastohydrody-
namic lubrication. Thus, it may be predicted that there 
is not a large difference between the ink film thickness 
and the film thickness of corresponding hydrodynamic 
lubrication. (Liu, Li and Lu, 2016)

The modern offset presses need a standardized model 
for flow of ink through the inking system of offset 
machines, for which optimum ambient conditions 
inside the machine room are required. Moreover, the 
inking rollers will be getting heated with machine run 
time and speed due to the friction, which may lead to 
the change in wet ink film thickness. To compensate 
this effect and achieve correct ink film thickness, the 
process parameters have to be calibrated each time, 
which is tedious and time consuming. 

Prediction of optimum wet ink film thickness is a mat-
ter of concern, which is evident from various research 
works. An experimental study (Hsieh, 1993) conducted 
in laboratory showed an association between the ink 
film thickness and its splitting forces. The develop-
ment of the ink key presetting system has been stud-
ied (Chu and Seymour, 1997), which could analytically 
preset ink keys and ratchets to shorten the make ready 
time. Estimation of ink tack in offset printing had been 
investigated (Gujjari, et al., 2006) by examining the 
printing speed and ink weight for different newsprint. 
Variations of ink thickness had been studied (Hersch, 
et al., 2009) by using spectral reflectance’s prediction 
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model. Elastic deformation of rubber ink roller and 
characteristics of ink flow through two ink rollers had 
been studied (Su, et al., 2012) under different condi-
tions to determine the rate of ink transfer. Reynolds 
equation for ink transfer in offset inking system had 
been deducted (Liu, Li and Lu., 2016) on the basis of 
electro-hydrodynamic lubrication theory, and the 
effect of ink transfer on printing speed and roller gap 
was also analyzed.

Machine learning (Chopra and Khurana, 2023) is an 
emerging field nowadays. Due to significant develop-
ment in hardware and software along with interfacing 
possibilities machine learning has become a popular 
tool for the prediction, classification and identifica-
tion in diverse engineering problems. It has been used 
in automotive (Jain, et al., 2022), food engineering 
(Jiménez-Carvelo, et al., 2022), structural engineering 
(Thai, 2022), financial sectors (Rakshit, Clement and 
Vajjhala, 2022) and in almost all the major areas. It 
has been used in printing researches but recent litera-
tures are mostly in the field of 3D printing and additive 
manufacturing (Zolfagharian, Bodaghi and Le Doigou, 
2022). However, considering the huge reported liter-
ature of its applications in all fields other than print-
ing and allied domains motivates towards exploring 
the scope of the work presented in this paper. This 
paper focuses on the possibilities of applying machine 
learning based prediction models to predict the ink 
film thickness in offset printing machines while major 
parameters of ambient press conditions are varied. 

In this present investigation, a novel methodology of 
prediction of wet ink film thickness has been devel-
oped on the basis of variation of ink film thickness with 
respect to different speeds and run time for different 
ambient conditions using machine learning regression 
algorithms. This will allow proper standardization of 
ink film thickness and can be implemented in offset 
printing process. 

2.  Materials and methods

A prototype of an inking roller arrangement that 
simulates the actual inking system of offset printing 
machines has been developed. The commercially avail-
able offset inks of process colors, namely, cyan (C), 
magenta (M), yellow (Y), and black (K) were used for 
measurement and prediction of purpose. Among dif-
ferent prediction models, two popular ones, namely, 
support vector regressor (SVR) (Steinwart and 
Christmann, 2008) and random forest regressor (RFR) 
(Breiman, et al., 2017) algorithms have been adopted 
here due to their simplicity and proven potential. 
A detailed dependency analysis between ink film 
thickness and different major parameters of ambi-

ent conditions that affect ink film thickness has been 
also presented towards understanding the degree of 
non-linearity in correlation. The results have been 
evaluated using three important evaluation metrics, 
namely residual plots, R2 values, and mean squared 
error (MSE) (Freund, Wilson and Sa, 2006).

2.1  Experimental procedure

The experiments were performed on inking rollers, 
which are an integral part of an inking system in an 
offset printing machine. The experimental model of 
inking rollers was custom-designed and manufactured 
as shown in Figure 1. The model consists of two hard 
rollers driven by gears and a pulley connected to a 
DC motor by a V-belt. Hard rollers and soft rollers are 
arranged alternately and three soft rollers are driven 
by friction with the hard rollers. The hard rollers have 
both rotating motion and sliding motion, while the soft 
rollers have only rotating motion. The sliding motion of 
hard rollers helps to distribute the ink evenly through-
out the whole length of the rollers.

The thickness of ink coating of different colors on roll-
ers was measured at varying time and speed each at 
different ambient conditions. The ink thickness was 
measured systematically using a wet film thickness 
gauge, which has a combination of three rolling disc 
sections. The two outer discs are exactly the same 
diameter, whereas the middle disc is smaller and 
eccentric to the outer two discs. As the gauge is rolled 
through a wet deposition of ink, the eccentric middle 
disc would only pick up the ink from the inked rollers, 
as illustrated in Figure 2. Wet and dry bulb thermom-
eters have been used for the measurement of ambient 
temperature and relative humidity.
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Figure 1: The ink roller model used for the experiment
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Figure 2: Ink thickness measuring gauge

2.2  Materials

The constituents of inks greatly affect the different 
parameters under consideration in this work. The gen-
eral data on the constituents of the commercial offset 
inks used for experiments have been consolidated in 
Table 1 (Leach, et al., 1993). The inks were supplied by 
DIC India Limited, Kolkata, India. Experiments were 
conducted on the custom-made model of inking roll-
ers (shown in Figure 1) by using these inks. The size 
of the roller was limited, hence limited amount of ink 
of 4.0 g/m2 was used every time with a variation of 
about 0.1 g/m2 for each color. After the ink was evenly 

distributed through all the rollers with the help of an 
oscillating lever attached to the hard rollers as shown 
in Figure 1, wet ink film thickness was measured on dif-
ferent sections of both soft rollers 1 and 3. The speed 
of the motor was modulated by varying the voltage of 
the supply current and measurements were conducted 
using the instrument called a tachometer. The process 
was continued until the maximum speed was reached.

2.3  Regression modeling to characterize ink film 
thickness

The choice of SVR and RFR regressors among many 
such regressors is driven by their computational sim-
plicity, faster prediction and considerable accuracy in 
predicting non-linear dataset. It can also be noted that 
by principle these two algorithms work in a totally 
different manner. The SVR is a kernel-based operation 
to address the non-linearity in the data using support 
vectors while RFR is one of the most popular ensemble 
learning mechanisms that predicts based on the prob-
ability values resulting from different decision trees in 
the model. Brief discussions about these two super-
vised machine learning algorithms have been pre-
sented here for ready reference. The data as collected 
by the previously discussed method were subjected to 
both the models and the prediction abilities of the indi-
vidual models have been assessed.

The implementation of the prediction models has been 
made with a train:validation:test data partitioning with 
60:20:20 ratios. That means with 60 % of entire data 
the models were trained; 20 % of the entire dataset was 
used for validation, i.e. tuning the parameters, and 20 % 
for testing the generalization potential. A good gener-
alization potential helps to avoid two important draw-
backs of machine learning algorithms called over-fitting 
and under-fitting. In both cases the models can per-
form well with the training data but fail to perform 
equally in case of unknown data. The implementations 
are realized in a Python environment using Anaconda 
Spyder® and scikitlearn® libraries in the Windows® PC 

Table 1: Generic ink formulation of cyan, magenta, yellow, and black (Leach, et al., 1993) 

Type Cyan Magenta Yellow Black

Pigment Lionol Blue 
FG-7330 
20.0 %

Rubine 
L5B 01 VP 2746 
18.3 %

Yellow CI number 12/
Lionol Yellow GRO 
26.7 %

Regal 99R 
carbon black 
12.0 %

Polyester alkyd resin 40.0 % 40.0 % 33.3 % 45.0 %
Anti-fly paste  3.0 %  3.0 %  3.0 %  3.0 %
Solvent 14.0 % 15.7 % 14.0 % 17.0 %
Melamine formaldehyde resin 12.0 % 12.0 % 12.0 % 12.0 %
Catalyst  2.0 %  2.0 %  2.0 %  2.0 %
Lubricating oil  7.0 %  7.0 %  7.0 %  7.0 %
Stabilizer  2.0 %  2.0 %  2.0 %  2.0 %
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platform. In both the cases the prediction of ink film 
thicknesses on the rollers has been made separately.

2.3.1 Support vector regression

The SVR generates different hyperplanes based on the 
calculated support vectors and optimizes to find the 
solution where these hyperplanes are separated to the 
maximum extent. The space of the hyperplane depends 
on the problem dimension. Being a supervised machine 
learning algorithm SVR conceptually constructs a tube 
around each of the hyperplanes by minimizing the pre-
diction error, which fundamentally finds the distance 
between the expected value and the predicted value in 
order to achieve that SVR eventually narrows down the 
tube and approaches towards flatness. The flatness of 
the tube can be assessed by Equation [1] where M is the 
order of polynomial function, w is the normal vector to 
the hyperplane surface and both are real-valued. The 
order of polynomials depends on the type of problem 
and in our case order of 3 was found to be optimal. 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =(𝑤𝑤!

"

!#$

𝑥𝑥!   [1] 

In the case the data is not linearly separable, like in 
our case, a kernel mapping is used to map the data in 
higher dimensional space, which results higher predic-
tion accuracy as well. In our case radial basis function 
(RBF) kernel has been used for that reason. The SVR 
also adopts a penalization parameter for predictions 
that are far from the expected value and it is measured 
in terms of width of the tube. Interested readers can 
read the details of SVR dynamics in the publication by 
Awad and Khanna (2015).

2.3.2 Random forest regression

Random forest is a supervised machine learning algo-
rithm, which is popular due to many reasons like fast 
training and prediction, lesser number of tuning para- 
meters and considerable potential to handle large 
dimensional problems with appreciable generalization 
power. It can be used in both classification and regres-
sion analysis. In our case the prediction of continuous 
data is needed hence random forest repressor has been 
adopted. 

It is an ensemble learning process where the term 
‘forest’ resembles number of decision trees (DTs). Each 
tree is associated with a collection of random variables 
that is represented as a vector X and the dimension p 
of X depends on the dimension of the problem as pre-
sented in Equation [2].

𝑋𝑋 = #𝑋𝑋!, 𝑋𝑋", … , 𝑋𝑋#&
$

  [2]

The RFR by means of its mathematical optimization 
process finds a prediction function f(x) and each tree 
provides a vector of predicted values Y using f(x). 
The prediction function is defined using a loss func-
tion which is most commonly the squared error and 
the algorithm iterates to minimize the estimated loss 
value EXY(L(Y, f(x))). Considering the ensemble learn-
ing phenomenon for regression the f is constructed as 
Equation [3] where hj represents individual tree (alter-
natively called the base learner) and j is the index of 
tree. However, in case of classification a ‘voting’ mecha-
nism is adopted. Interested readers can read the details 
of the algorithm in the publication by Cutler, Cutler and 
Stevens (2012). The parameter settings of SVR and RFR 
for the present study are given in Table 2.

𝑓𝑓(𝑥𝑥) =
1
𝐽𝐽(ℎ!

"

!#$

(𝑥𝑥)  [3] 

Table 2: Parameter settings for prediction models

SVR RFR

Kernel – Radial 
 basis function (RBF)
Epsilon – 0.1
Tolerance – 0.001
Verbose – False
Cache size – 200

Bootstrap – True
Optimization criteria – MSE
Minimum sample leaf – 1
Minimum sample split – 2
Number of trees – 2 000
Random state – 0
Verbose – 0

3.  Results

The dataset used in this work had 6 columns, i.e. color, 
the run time (min), speed of rollers (rpm), average ink 
film thickness (µm), ambient temperature (°C), and rel-
ative humidity (%). The nature of the data correlation 
and degree of non-linearity were studied using scatter 
plots as shown in Figure 3. The accuracies of the indi-
vidual models with different cases have been shown 
using percentage residual plots and R2 values. Some 
of the prediction vs. actual plots for SVR and RFR are 
shown in Figures 4 and 5, respectively.

Residual plots are another important visual repre- 
sentation to see the coherence of predicted values to 
the actual values. It also shows the resulting outliers, 
which in turn can help to judge the potential of the 
model. The residual plots for SVR and RFR are shown 
in Figures 6 and 7, respectively.

The result of 10-fold cross-validation is shown in 
Table 3. The average prediction accuracy and stand-
ard deviation values for both the prediction models 
have been included in the table as well. The 10-fold 
cross-validation is one of the most popular metrics, 
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which folds the data in a way that at every run 90 % 
of the validation data is subjected as a training set and 
the rest 10 % as the test set. In this way, every data gets 
included in the train and test set at least once.

Table 3: The cross validation 
and overall accuracy of the regressors

Test SVR RFR

Fold 1 87.93 82.87
Fold 2 82.87 89.59
Fold 3 89.59 95.53
Fold 4 95.36 96.19
Fold 5 96.19 93.02
Fold 6 93.02 92.87
Fold 7 82.87 94.27
Fold 8 94.27 98.80
Fold 9 88.80 88.20
Fold 10 91.20 97.32
Average accuracy 90.21 92.87
Standard deviation ±4.78 ±4.80

As it can be seen RFR provides improved consistency 
than SVR. However, in both cases, the average overall 
accuracy is in the tune of more than 90 %.

Hence, the prediction model can be considered as a 
potential addition to the existing manual and time-con-
suming systems of ink film thickness measurement 
techniques. 

Table 4 provides the R2 and MSE values for the predic-
tors under consideration. These two are also impor-
tant metrics to access the potential of the prediction 
models. Higher R2 values and lower MSE values reflect 
better prediction possibilities.

Table 4: Comparison of prediction models 
in terms of R2 and MSE

Metric SVR RFR

R2 0.8923 0.9474
MSE 0.0971 0.0836
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Figure 3: Examples of scatter plots of varying pattern for (a) black ink thicknesses with roller speed 
and wet temperature of environment, (b) cyan ink thicknesses with roller moving time and relative humidity  

of environment, (c) magenta ink film thicknesses with roller speed and dry temperature of environment, 
and (d) yellow ink thicknesses with relative humidity and wet temperature of environment
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Figure 4: Prediction vs. actual ink film thickness against (a) roller movement time, (b) against roller speed, 
and (c) relative humidity using SVR; blue and red points represent actual and predicted values, respectively
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and (c) relative humidity using RFR; blue and red points represent actual and predicted values, respectively
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Figure 6: Residual plots for prediction results using SVR in the case of ink film thickness against 
(a) roller movement time, (b) against roller speed, and (c) relative humidity
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Figure 7: Residual plots for prediction results using RFR in the case of ink film thickness against 
(a) roller movement time, (b) against roller speed, and (c) relative humidity
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4.  Discussions

Figure 3 clearly shows that wet ink film thickness is 
well dependent on the factors under consideration. 
Even if the conditions remain consistent the ink film 
thickness changes with the ink color as well. The 
plots have also revealed a considerable degree of 
non-linearity. This motivates towards development of 
the regression model which can predict the ink film 
thickness in the rollers of the experimental model. 
The plots also show that RFR can predict more accu-
rately compared to SVR. As in most of the cases the 
actual and predicted values (blue and red points) are 
overlapping in case RFR.

The residual plots in Figures 6 and 7 show that SVR 
can predict closely to the actual data points in most of 
the cases and also in terms of residual plots the points 
are closer to the value 0 (as shown by the black line 
in the plots). Also, the data spread across both sides 
of the zero line shows the unbiased of the data. The 
total number of outliers in all the residual plots is also 
considerably low to the tune of 2 % of the entire test 
dataset. The residual plots also indicate better predic-
tion by RFR in terms of closeness to the reference line 
and a lower number of outliers compared to SVR. It can 
be also noted that the performance of SVR and RFR are 
similar for most of the samples hence the plot char-
acteristics are quite the same. However residual plots 
show smaller deviations from the reference line and 
lower degrees of outliers in the case of RFR. Hence RFR 
can be considered as a better predictor than SVR in this 
study which is further reflected in Tables 3 and 4.

In terms of 10-fold cross-validation results it can be 
inferred that both models show considerable con-
sistency with low standard deviation values. The 
parameter settings for such fold have been used in the 
presented results. The average accuracy in both cases 
is more than 90 % while RFR has shown better accu-
racy. It can also be observed that in some folds for both 
the regression models, the accuracy has crossed 95 %. 

Finally, it can be seen that in terms of R2 both the pre-
dictors result in nearly 90 % accuracy while the accu-
racy with RFR is higher. The same is reflected with MSE 
values where RFR has resulted in less. Considering the 
lower MSE values both the models have shown promis-
ing prediction potential in our case. Nevertheless, con-
sidering both R2 and MSE, RFR is a better predictor for 
the presented work.

5.  Conclusion

In this study, experiments have been carried out sim-
ulating real production conditions. The experimental 
results demonstrate that there is a correlation between 
ink film thickness and machine run time and speed 
for different ambient conditions. The analytics of the 
results obtained show some significant aspects, which 
may be useful for standardization. The analysis of the 
regression model shows that at a constant speed, as 
the relative humidity decreased and temperature 
increased, the ink film thickness increased. The ink 
film thickness decreased when the relative humidity 
increased and temperature decreased. When speed 
was varied, the ink film thickness increased up to a 
point with the rise in relative humidity and thereafter 
decreased with a further increase in relative humidity.  
It is concluded that by adopting the proposed regres-
sion model for assessing the wet ink film thickness at 
varying machine run time and speed, proper standard-
ization of ink film thickness can be implemented in the 
offset printing process.

The study also reveals that both SVR and RFR regres-
sion models can perform competitively for accurate 
prediction of ink film thickness. The present investiga-
tion undoubtedly confirms that this regression model 
for effective measurement of ink thickness works accu-
rately well in offset printing.

From this study, it is evident that offset printing pro-
cess has a scope of mechanism to adjust the ink film 
thickness at varying time and speed for different ambi-
ent conditions. This approach can also be extended to 
find out the correlation between ink film thickness and 
roller contact pressure along with ink film thickness 
(i.e. the gap between rollers) and the size of the roll-
ers. Also, the effect of the damping solution along with 
the proper ink deposition on the impression cylinder 
needs to be studied further for optimum ink-water bal-
ance as in real offset printing conditions. The experi-
mentations with different other prediction models can 
also be performed in future research.

This work can as well be extended toward the hard-
ware implementation of automated controls in print-
ing machines. Considering the findings and future 
scopes the proposed approach may be considered as 
an important dimension to the emerging area of opti-
mization and prediction of ink thickness in offset print-
ing process.
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