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1.  Introduction

For traditional printing where ink is pressed onto 
paper, we have observed as an industry that some 
physical behaviour of paper such as its ability to absorb 
ink quickly or the smoothness of its surface correlate 
well with print image quality. Paper properties have 
been identified that correlate with this physical behav-
iour, for example porosity (air permeability) and gloss. 
Paper manufacturers make measurements of these 
paper properties as part of the production process and 
use these to communicate with printers to help with 
paper selection.

For inkjet printing where ink is jetted onto paper, it has 
been observed that these conventional paper properties 
do not predict print image quality well. Understanding 
the physical interaction between ink and paper contin-
ues to be very important, and there are many scientific 
approaches in order to understand the physical inter-
actions and their mechanism, for example Blohm and 
Åslund (2004), Kettle, Lamminmäki and Gane (2010), 

and Gigac, et al. (2014). The effect of calcium carbonate 
coating is explored in Možina and Franken (2018) and 
surface chemistry in general in Moutinho, Ferreira and 
Figueiredo (2010); the effects documented by these 
projects may be related to the surface measures in 
this paper. Krainer, Saes and Hirn (2020) explored the 
relationship between contact angle and ink spreading. 
These research projects have established some general 
principles that can be applied to the design of paper, 
however, the relationship between image quality and 
paper properties cannot yet be clearly described.

High-speed inkjet presses generally include two stages. 
In the first stage the paper is coated and in the second 
stage ink is jetted onto the coated surface. The first 
stage (precoating) modifies the characteristics of the 
paper surface to widen the window of paper proper-
ties that produce good print image quality. This is not 
intended to make the surface condition the same for 
all papers and the original paper properties still have 
a substantial influence following precoating. The time 
between precoating and inking is very small and usu-
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ally the precoating does not completely dry before 
inking, therefore precoating and inking are continuous 
and dynamic processes and should not be considered 
separately. In addition, the method of precoating varies 
from one press to another as it is specific to the way 
in which ink is jetted onto the paper surface. For this 
reason, all measurements of the papers in this study 
were made before any precoating. From a practical 
perspective, it may be sufficient to find a direct cor-
relation between measured properties (before any 
precoating step) and print acceptability based on print 
image quality.

The research described in this publication is one of the 
outcomes from a summit meeting held in April 2018 
in conjunction with an ISO/TC 130 meeting where a 
range of industry experts discussed how the process 
of paper selection for high-speed inkjet presses might 
be improved. Attendees included representatives from 
paper manufacturers and from inkjet press manu-
facturers. In that meeting it was reported that con-
siderable work had been done to try to find a simple 
metric that can be used to predict print image quality 
for inkjet presses without any success. At that meet-
ing a group of industry experts including representa-
tives from a number of inkjet press manufacturers (an 
ad-hoc group) agreed to work together to work on this 
problem. One inkjet press manufacturer, Fujifilm, con-
ducted the research reported herein.

As this publication will show, while a single metric that 
predicts print image quality has not been identified, 
combinations of a relatively small number of metrics 
have been identified that enable prediction of print 
image quality with a high degree of confidence.

A study was conducted on a large set of papers printed 
on a single inkjet press (referred to as ‘large study’) 
to establish principles and methods of prediction. 
A second study was conducted on a small set of papers 
printed on three different inkjet presses (referred to as 
‘multi-press pilot study’). The results show that in all 
cases, a small set of predictor metrics produces high 
confidence in the prediction of print image quality. The 
best set of metrics for one press may not be the best 
set for another although there is significant overlap 
between these sets.

2.  Methods

2.1  Paper selection

For the large study, a range of 250 commercially availa-
ble papers were used, including cardboard, decorative 
and glossy papers. In a few cases, papers from different 
production lots were treated as different paper types.

For the multi-press pilot study, a set of 20 papers were 
selected by 7 inkjet press manufacturers. Each manu-
facturer selected at least one paper that produced good 
results and at least one that produced poor results 
using the best known press settings for that paper. The 
method of assessment in each case was the manufac-
turer’s quality assurance process which was not dis-
closed and probably different for each manufacturer.

Papers were stored and measured in environments 
having temperature of 23 °C ± 1 °C and relative humid-
ity of 50 % ± 2 %.

2.2  Measurement of paper properties

For the large study, all measurements were made by 
Fujifilm. For the multi-press pilot study, paper proper-
ties were measured in different laboratories that were 
made available to the project based on the capability of 
each laboratory. The set of paper properties measured 
for the large study and the set used by the multi-pres 
pilot study were slightly different from each other and 
the two sets of measurements made are described in 
Annex A.

2.3  Printing and visual assessment

For the large study, papers were printed on the 
Fujifilm Jet Press 720 which was optimised for each 
paper to produce the best reproduction possible in 
each case using Fujifilm’s standard method. The over-
all print image quality was assessed using Fujifilm’s 
standard quality assurance method. This was assessed 
from various perspectives such as image quality, qual-
ity of text, quality of solid areas and then each paper 
was classified as ‘Accepted’ or was assigned another 
category. The second category included a range from 
those that are never acceptable to those that may be 
acceptable for some uses. For the purpose of analy-
sis, this second range of papers were combined into 
a single category.

For the multi-press pilot study, each paper in the set 
of papers was printed by three press manufacturers. 
In each case, the manufacturers applied their standard 
procedure for identifying the most suitable press setup 
for each. The way in which these presses were config-
ured are not disclosed and this is likely to have been 
different for each manufacturer.

2.4  Prediction of print image quality

2.4.1 Background

The first step was to use a traditional approach and to 
look for a simple correlation between one of the paper 
metrics and print image quality assessment for each 
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set of papers. When no such correlation could be iden-
tified, two possible options were considered.

The first option considered was to develop a new 
paper metric that provides a better correlation with 
print image quality. To date, it has not been possible to 
identify any existing metric or to develop any new met-
ric of this kind that predicts print image quality. Steps 
to explore this option continue and may be fruitful in 
the longer term.

The second option was to look for correlation between 
print image quality and a combination of paper met-
rics. The initial investigation of this seemed to be 
promising but it was clear that at least three metrics 
are required to obtain a satisfactory prediction.

2.4.2 Model construction and prediction accuracy 
assessment

Logistic regression, a standard statistical method using 
linear regression for dimensionality reduction, was 
used as the method of prediction for this work. KNIME 
(see KNIME, 2020) was used as the platform to perform 
this analysis. Details of the use of logistic regression 
are described in Annex B.

For both studies, the method involves using a subset 
of papers to build a prediction model (the training set) 
and then testing the accuracy of this model using the 
remaining papers (the test set).

For the large study this was straightforward as it was 
possible to select 80 % of the papers at random as the 
training set used to build the model and then used the 
remaining 20 % of the papers as the test set to estimate 
the prediction accuracy of the model.

The technique used for the multi-press pilot study was 
different because of the small number of papers used. 
In this case, all of the papers except one were used as 
the training set to build the model and then the single 
paper was used as the test set to estimate prediction 
accuracy. This process was repeated for each paper 
in turn and so produced 20 predictions (one for each 
paper). This entire set of predictions was used when 
considering the overall accuracy of the model. This is a 
variant of k-fold cross-validation known as ‘leave one 
out cross-validation’ (LOOCV).

When considering logistic regression with more than 
three parameters, the method used to construct the 
model involved finding the minimum value of a multi-
dimensional function and this can produce slightly dif-
ferent results each time and so it was also important 
to repeat each set of predictions to ensure consistent 
results.

2.4.3 Deciding which paper metrics to use

Since there are 16 paper metrics to choose from and 
if (for example) 4 metrics are selected for the model, 
there are almost 2 000 choices and it is not always prac-
tical to test every combination. It is therefore desirable 
to reduce the set of options and one way to do this is 
to identify the parameters that are independent from 
other parameters.

To do this the variance inflation factor (VIF) was calcu-
lated for the set of parameters and the parameter with 
the strongest correlation with other parameters was 
removed from the set. In this way the set of parameters 
was reduced to a more manageable set. The remain-
ing metrics were then tested individually to determine 
their influence and the least important metric was 
removed.

3.  Results

3.1  Traditional approach

When simple 2D plots were made, such as shown in 
Figure 1, in order to explore the relationship between 
the physical parameters of paper and parameters 
of image quality no clear correlation was apparent. 
Figure 1 shows an example of a 2D plot for a set of 
papers from the large study between a physical param-
eter of paper (the ink to paper contact angle recorded 
in 300 ms after the landing of ink) and a parameter of 
image quality (the maximum optical density of cyan). 
The dashed lines have been added to show slight 
trends in the data, for example there is a slight trend 
for a smaller contact angle to produce a higher maxi-
mum optical density, but these do not model the mech-
anism for ink−paper interaction.
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Figure	1:	The	2D	plot	of	cyan	maximum	optical	density	against	ink	contact	angle	
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Figure 1: The 2D plot of cyan maximum optical density 
against ink contact angle

There may be a way to analyse such a relationship 
between the simple physical interaction between 
paper and ink, but as yet no satisfactory theory has 
been established.
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Statistical approaches were also tested, an example 
of which is shown in Figure 2 for the same measured 
parameter, namely ink contact angle. In this case, each 
dot represents assessment of print image quality 
for a single paper, being given a value of either 1 for 
accepted and 0 for not accepted. The green line shows 
the logistic regression curve in respect to ink contact 
angle after 300 ms after landing of ink, and it can be 
seen that many points would have been incorrectly 
classified based on this single parameter. Across all 
such parameters, no single parameter was found which 
could give a reliable prediction for the acceptability of 
print image quality.

1 
 

	

	

Figure	2	Example	of	logistic	regression	for	the	ink	contact	angle	300	ms	after	the	landing	of	ink	
Figure 2: Example of logistic regression for the ink 

contact angle 300 ms after the landing of ink

3.2  Use of multidimensional linear methods

3.2.1 General approach

Since a simple relationship between parameters such 
as shown in Figure 1 could not be found an alternative 
approach was needed and multidimensional analysis 
was explored to determine whether this shows such a 
relationship.

(3 mm flow cup DIN 53211)

Instead of looking for a relationship between physical 
parameters and image quality parameters a high-level 
approach was adopted. In this case it was assumed that 
the details of printing and assessment are unknown 
and that all that is known are the paper metrics and 
the result of assessment of print image quality. It was 
assumed that care has been taken to establish the best 
printing conditions for each paper and that a consist-
ent process has been established for the assessment 
of print image quality. These assumptions mirror what 
happens in practice when manufacturers assess a new 
paper type for their press.

3.2.2 Prediction using all data sets and parameters

Logistic regression analysis was applied to the data. 
For the large study, predictions were calculated for 
200 combinations randomly selected from the data set 
as the training set. An average accuracy of 0.80 and 
Cohen’s kappa of 0.54 (Cohen, 1960) were obtained 
using the metrics shown in the first column of Table 1.

The first and second row of the table shows a good 
accuracy value, but a low value for Cohen’s kappa. This 
difference indicates that the set of papers used to make 
predictions included more papers from one assess-
ment category than the other. Since the selection pro-
cess was random this was to be expected.

3.2.3 Removal of correlated parameters

In order to reduce the set of parameters used by the 
prediction model their independence was checked by 
calculating their VIF with all other parameters. The 
test results are shown in Table 2.

Table 1: Improvement in prediction accuracy and Cohen’s kappa for each step

Condition All metrics VIF test Test 1 Test 2 Test 3

Remove two papers 

(58 and 63)

Accuracy 0.803 0.808 0,827 0.833 0.840 0.869
Cohen's kappa 0.537 0.554 0.602 0.616 0.629 0.690
Contact angle (ink, 300 ms)      

Contact angle (ink, 10 000 ms)      

Contact angle (ink, 30 000 ms)      

Contact angle (H2O, 300 ms)      

Contact angle (H2O, 10 000 ms)      

Contact angle (H2O, 30 000 ms)      

Surface pH      

Roughness      

Thickness of coating layer      

Si component      

Al component      

Ca component      

Ti component      
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was repeated three times (Test 1, Test 2 and Test 3 of 
Table 1) and each time the set of metrics with the best 
score was selected. Test 1 showed that removing the 
thickness of coating metric improved the accuracy and 
Cohen’s kappa to 0.83 and 0.60, respectively. Test 2 
showed that removing the surface pH metric improved 
the Cohen’s kappa to 0.62. Test 3 showed that remov-
ing the contact angle (ink, 300 ms) metric the accu-
racy and Cohen’s kappa improved to 0.84 and 0.63, 
respectively.

It was further observed that two papers seemed to 
be substantially different from the others in the set 
(papers 58 and 63). When these two papers were 
removed from the assessment, the accuracy and 
Cohen’s kappa increased substantially to 0.87 and 0.69, 
respectively, as shown in the last column of Table 1. 
The reason for this is not completely clear and further 
investigation of this aspect is needed. It is possible 
that the visual assessment was incorrect or that there 
is some fundamental difference in these papers com-
pared to the others.

4.  Discussion

4.1  Prediction

These values for accuracy and Cohen’s kappa seem to 
indicate that this provides a good basis for a prediction 
method for print image quality.

Strong correlations (VIF > 5) can be found between ink 
contact angles (300 ms and 30 000 ms), between water 
contact angles (10 000 ms and 30 000 ms) and between 
metal components (Si and Al). Based on this analysis, 
contact angle (ink, 30 000 ms), contact angle (H2O, 
30 000 ms) and Al component were removed from the 
model.

The results of predictions following the removal of these 
parameters are shown in the third column of Table 1. 
There is no dramatic change to the accuracy but the 
value of Cohen’s kappa is improved. Following this 
step, the average of accuracy was 0.81 and the average 
Cohen’s kappa was 0.55.

3.2.4 Removal of additional metrics using k-fold 
cross-validation

A method based on LOOCV was used to identify metrics 
with a low or negative effect on the model. For each 
LOOCV iteration, a single paper was used as the test set 
and all other papers used to build a logistic regression 
model. The prediction was recorded for each paper 
and this prediction compared with visual assessment. 
An LOOCV accuracy score was assigned for the set of 
metrics tested in this way as the ratio of correct pre-
dictions to the total number of papers.

This test was repeated multiple times, and each time 
one of the metrics was removed. The set of metrics 
with the highest LOOCV score was identified. This test 

Table 2: Variance inflation factors (the values above 2, 5 and 10 marked in green, yellow and red, respectively)
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Contact angle (ink, 300 ms) –
Contact angle (ink, 10 000 ms)  4.034 –
Contact angle (ink, 30 000 ms) 10.692 4.049 –
Contact angle (H2O, 300 ms)  1.367 1.269 1.300 –
Contact angle (H2O, 10 000 ms)  2.833 1.918 2.070 1.401 –
Contact angle (H2O, 30 000 ms)  2.861 1.996 2.257 1.407 23.454 –
Surface pH  1.122 1.085 1.125 1.050  1.128 1.129 –
Roughness  1.173 1.148 1.212 1.480  1.209 1.222 1.092 –
Thickness of coating layer  1.031 1.015 1.038 1.013  1.004 1.004 1.037 1.003 –
Si component  1.016 1.019 1.004 1.057  1.052 1.041 1.232 1.063 1.001 –
Al component  1.012 1.016 1.003 1.044  1.039 1.030 1.373 1.052 1.011 5.953 –
Ca component  1.006 1.001 1.012 1.000  1.005 1.007 1.872 1.039 1.007 2.063 2.170 – –
Ti component  1.007 1.001 1.002 1.034  1.033 1.028 1.642 1.018 1.085 1.262 1.575 1.613 1.000
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The studies considered only measurement values of 
physical paper properties when making predictions, 
but when data directly relating to image quality such 
as whiteness and gloss are also used in the prediction 
a different direction may be found.

Further investigation of this aspect is necessary includ-
ing other measures such as those included in the 
ad-hoc data sets.

4.2  Verification of this prediction method

In order to confirm that this prediction method works 
well with data and assessments other than Fujifilm 
(the large study), predictions were also made using 
the data measured by the ad-hoc group. These predic-
tions were done using 20 types of paper collected by 
the group. In this case, the number of data sets is very 
small and it is therefore necessary to reduce the set of 
parameters used for prediction. 

Although VIF analysis is one direction to remove the 
parameters, only four parameters were eliminated 
from these data sets. Since k-fold cross-validation 
reduces the size of data sets, it is not an effective 
method for this prediction with small data sets. In the 
Equation [B.1] of logistic regression explained in Annex 
B, the coefficient βi determines the extent to which the 
variable xi contributes to the prediction. Therefore, if 
the coefficient βi is close to zero, the variable xi does 
not contribute to the prediction, and those parameters 
can be eliminated from the prediction. Table 3 shows 
the list of coefficients βi for the printers by three dif-
ferent manufacturers.

Table 3: Coefficients obtained for each printer

No. Parameters

Coefficient βi 

Printer A  Printer B  Printer C

1. Whiteness −2.016   1.758 −0.454
2. Gloss −8.953  −8.100 −7.439 
3. Opacity −2.722   5.899 −7.317
4. Surface pH  1.688 −14.573 −2.134
5. Liquid penetration  5.067  −3.184  0.662
6. Setting homogeneity −0.931   0.065 −2.976
7. Surface roughness  7.060   1.348  3.220
8. Mercury porosity −3.187   0.507 −0.768
9. Al component  2.659   6.619  0.944

10. Si component −0.425   9.345  0.988
11. Ca component  7.976   1.905 −2.339
12. Ti component  4.744   0.466  0.388 
13. Hygroexpansivity −0.707  −7.721  4.507
14. Contact angle 300 ms  5.967   0.862  1.943
15. Contact angle 1 100 ms  4.749   1.830  2.760
16. Contact angle 3 100 ms  6.315   0.853  3.399
17. Constant −3.845   7.415  2.193

Even with the same parameter, the coefficients are dif-
ferent depending on the printer. Here, the parameters 
with coefficients less than 1.0 were eliminated from the 
prediction. Tables 4 to 6 shows the results of the pre-
diction using a small data set that has undergone the 
processes reducing the parameters used. 

Table 4: The results of predictions for small-size data 
for printerA 

Results of assessment P (Acc) P (NA) Prediction

1 Acceptable 0.6492 0.3508 Acceptable
2 Not acceptable 1.0000 0.0000 Acceptable
3 Acceptable 0.9984 0.0016 Acceptable
4 Acceptable 1.0000 0.0000 Acceptable
5 Acceptable 1.0000 0.0000 Acceptable
6 Acceptable 1.0000 0.0000 Acceptable
7 Not acceptable 1.0000 0.0000 Acceptable
8 Not acceptable 0.0000 1.0000 Not acceptable
9 Acceptable 0.6347 0.3653 Acceptable

10 Acceptable 1.0000 0.0000 Acceptable
11 Not acceptable 0.0041 0.9959 Not acceptable
12 Acceptable 1.0000 0.0000 Acceptable
13 Acceptable 1.0000 0.0000 Acceptable
14 Not acceptable 0.0000 1.0000 Not acceptable
15 Not acceptable 0.9999 0.0001 Acceptable
16 Acceptable 0.0000 1.0000 Not acceptable
17 Not acceptable 0.0000 1.0000 Not acceptable
18 – – – –
19 – – – –
20 Acceptable 0.6181 0.3819 Acceptable

Table 5: The results of predictions for small size data 
for printer B

Results of assessment P (Acc) P (NA) Prediction

1 Acceptable 1.0000 0.0000 Acceptable
2 Acceptable 0.9998 0.0002 Acceptable
3 Acceptable 0.9999 0.0001 Acceptable
4 Acceptable 1.0000 0.0000 Acceptable
5 Not acceptable 0.4306 0.5694 Not acceptable
6 Not acceptable 0.0000 1.0000 Not acceptable
7 Not acceptable 0.0000 1.0000 Not acceptable
8 Not acceptable 0.0000 1.0000 Not acceptable
9 Not acceptable 0.0038 0.9962 Not acceptable

10 Not acceptable 0.0000 1.0000 Not acceptable
11 Not acceptable 1.0000 0.0000 Acceptable
12 Acceptable 1.0000 0.0000 Acceptable
13 Not acceptable 0.3097 0.6903 Not acceptable
14 Not acceptable 0.0000 1.0000 Not acceptable
15 Acceptable 0.0389 0.9611 Not acceptable
16 Not acceptable 0.0513 0.9487 Not acceptable
17 Acceptable 0.5966 0.4034 Acceptable
18 Acceptable 1.0000 0.0000 Acceptable
19 Not acceptable 1.0000 0.0000 Acceptable
20 Not acceptable 0.0717 0.9283 Not acceptable
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Table 6: The results of predictions for small size data 
for printer C

Results of assessment P (Acc) P (NA) Prediction

1 Acceptable 1.0000 0.0000 Acceptable
2 Acceptable 1.0000 0.0000 Acceptable
3 Acceptable 0.9994 0.0006 Acceptable
4 Acceptable 0.9999 0.0001 Acceptable
5 Acceptable 1.0000 0.0000 Acceptable
6 Acceptable 1.0000 0.0000 Acceptable
7 Not acceptable 0.0000 1.0000 Not acceptable
8 Not acceptable 0.0000 1.0000 Not acceptable
9 Acceptable 1.0000 0.0000 Acceptable

10 Acceptable 0.9809 0.0191 Acceptable
11 Not acceptable 0.1736 0.8264 Not acceptable
12 Not acceptable 0.0007 0.9993 Not acceptable
13 Not acceptable 0.0289 0.9711 Not acceptable
14 Not acceptable 0.0712 0.9288 Not acceptable
15 Not acceptable 0.0001 0.9999 Not acceptable
16 Not acceptable 0.0000 1.0000 Not acceptable
17 Not acceptable 0.0000 1.0000 Not acceptable
18 Acceptable 0.9285 0.0715 Acceptable
19 Not acceptable 0.0000 1.0000 Not acceptable
20 Acceptable 0.9999 0.0001 Acceptable

All the predictions (P (Acc) for acceptable and P (NA) 
for not acceptable) have high accuracy, particularly, all 
predictions are correct for printer C.

According to these results, the method provides a good 
prediction of visual assessment. On the other hand, it is 
unlikely that a set of 20 papers is sufficient to provide 

an accurate prediction for all papers. For users of dig-
ital presses, however, even a lower level of prediction 
would be beneficial.

4.3  Extending the multi-press study

In an ideal world, a very large number of papers would 
be printed on a large number of digital presses and 
the result of printing carefully assessed by multiple 
experts. In practice this is difficult, as configuring the 
presses and assessing the result for a single paper can 
be quite time consuming. Different formats of printing 
presses, for example sheet sizes or roll versus sheet 
differences also need to be considered.

It has been helpful to hold the multi-printer pilot study 
with a small number of digital presses and papers in 
order to establish working methods that can be devel-
oped and where necessary modified for use in a larger 
study. Building on the experience gained from this 
study should inform future projects.

5.  Conclusions

These studies have been able to demonstrate that 
a model can be developed where a relatively small 
number of paper metrics when combined produces 
a good prediction for print image quality. They have 
only demonstrated this for a limited number of digital 
presses and papers and further testing is necessary to 
ensure reliable application of this model.
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Annex A: Measurements and measurement methods

Table A.1 shows the set of paper measurements made by Fujifilm for use in the large study. This set of metrics was 
selected from a larger set of measurements made by Fujifilm and represents the set that has the most significant effect 
for the Fujifilm press used in present study.
Table A.2 shows measurements used for the multi-press pilot study made by members of the ad-hoc group. In some 
cases, the measurement methods differ slightly even where the same name is used.

Table A.1: Description of measurements used for the large study

Measurement name Description

Contact angle (ink, 300 ms)
Contact angle (10 000 ms)
Contact angle (ink, 30 000 ms)
Contact angle (H2O, 300 ms)
Contact angle (H2O, 10 000 ms)
Contact angle (H2O, 30 000 ms)

Measured by an automated contact angle tester for ink and water, at intervals of 300 ms, 
10 000 ms and 30 000 ms after the ink or water landed on the surface.
See IEC 62899-201:2016 Amendment 1 (summary) and TAPPI/ANSI T 558 om-15 
(full description).

Surface pH Measured by pH meter with flat-head electrode. 
See IEC 62899-201:2016+AMD1:2018, Amendment 1.

Roughness Surface roughness was measured by Parker-Print-surf (PPS) method.
See ISO 8791-4:2007.

Thickness of coating layer Evaluated by observation from a scanning electron microscope (SEM). The details including 
the preparation of cross-sections are specified in IEC 62899-201:2016+AMD1:2018, 
Amendment 1.

Si component
Al component
Ca component
Ti component

The composition was analysed by X-ray fluorescence spectrometry (XRF) and the amounts of 
Al, Si, Ca and Ti were measured. Units are kilo count per second (kcps) according to the Kα ray 
of each metal.
See IEC 62899-201:2016+AMD1:2018, Amendment 1.

Citations Table A.1

International Electrotechnical Commission, 2018.
Technical Association for the Pulp and Paper Industry, 2015.
International Organization for Standardization, 2007.
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Table A.2: Description of measurements used for the multi-press pilot study

Measurement name Description

Whiteness Based on adopted Hunter Whiteness Index calculated from CIELAB:

𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100 − ,(100 − 𝐿𝐿∗)1 + 𝑎𝑎∗1 + 𝑏𝑏∗1	

	

[A.1]

where
L*, a* and b* are the components of CIELAB (see Whetzel, 2014).

Gloss The 60° gloss measurement using Byk micro-TRI gloss meter. See ISO 2813:2014

Opacity Measured by the diffuse reflectance method using L&W Elrepho 070. The illuminant/observer was C/2°.
See ISO 2471:2008.

Surface pH Measured by the pH meter with flat-head electrode.
See IEC 62899-201:2016+AMD1:2018.

Liquid penetration Automatic scanning liquid absorptometer based on Bristow’s method (see Bristow, 1967) was used.

Setting homogeneity The surface of tested papers was coated entirely with purple ink in a thick layer. The two minutes later 
all excess ink was wiped off and its uniformity assessed by a group of experts from Fogra and ISO/TC 130.
Ink used: ‘wipe test ink’ from Flint Group Germany.

Surface roughness Surface roughness was measured by Parker-Print-surf (PPS) method. See ISO 8791-4:2007.

Mercury porosity Measured by Mercury porosimetry; the mercury pressure was up to 345 MPa (50 000 psi).
See ISO 15901-1:2016.

Al component
Si component
Ca component
Ti component

The composition was analysed by X-ray fluorescence spectrometry (XRF) and the amounts of Al, Si, Ca 
and Ti were measured. Units are kilo count per second (kcps) according to the Kα ray of each metal.
See IEC 62899-201:2016+AMD1:2018.

Hygroexpansivity Dimensional stability for moisture is measured as hygroexpansivity.
See ISO 8226-1:1994.

Contact angle 300 ms
Contact angle 1 100 ms
Contact angle 3 100 ms

Measured by an automated contact angle tester for water at intervals of 300 ms, 1 100 ms and 3 100 ms 
after the water landed on the surface.
See IEC 62899-201:2016+AMD1:2018, Amendment 1 (summary) and TAPPI/ANSI T 558 om-15 
(full description).

Citations Table A.2

International Electrotechnical Commission, 2018.
International Organization for Standardization, 1994; 2007; 2008; 2014; 2016.
Technical Association of the Pulp and Paper Industry, 2015.
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Annex B: Summary of the use of logistic regression

B.1 General
The general equation for a logistic regression model is shown in Equation [B.1].

𝑝𝑝 =
1

1 + 𝑏𝑏&(()*(+,+*(-,-…*(/,/)
	  [B.1]

where in this case,
p is the probability of prints made on the paper having good print image quality,
βi are the parameters of the model,
xi are the predictors of the model, in this case the selected paper property measurements,
b is a base which in this case is the base of the natural logarithm (e).

This equation can be thought of as having two steps: a dimensionality reduction step which maps the multiple 
dimensions xi to a single dimension (y), and a mapping step which maps y which has range (±∞) to the range [0 1].

These two steps can be written as shown in Equations [B.2] and [B.3].

𝑦𝑦 = 𝛽𝛽$ + 𝛽𝛽&𝑥𝑥& + 𝛽𝛽(𝑥𝑥( … + 𝛽𝛽*𝑥𝑥*	  [B.2]

𝑝𝑝 =
1

1 + 𝑒𝑒&'   [B.3]

Consider the case of two paper properties, x1
 = Contact angle and x2 = Ca content. Each paper can be plotted as shown in 

Figure B.1 according to the measurement of each of these two properties. In this case, green circles indicate papers that 
produce good print image quality and red crosses those that do not.

 
Figure B.1: Assessment relative to two paper metrics

The set of values corresponding to y = 0 for the first step of the equation is illustrated by the blue line. The region to the 
left of the line is predicted by the model as Acceptable and the region to the right is predicted as Not acceptable.

Each circle or cross has a y value corresponding to its distance from this line. The result of this mapping is shown in 
Figure B.2 which shows the values of y on a number line and Figure B.3 which shows the corresponding probability p.
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Figure B.2: Distance (y) from class boundary for each paper

 
Figure B.3: Relationship between logistic regression probability and distance

As can be seen, the results for these two paper properties are quite good but can be improved. For example, visual 
inspection shows that eight papers that were classified as Not acceptable have been predicted by the model as being 
Acceptable (the red crosses to the left of the model class boundary in Figure B.1) and similarly two papers that were 
classified as being Acceptable have been predicted by the model as being Not acceptable (green circles to the right of 
the model class boundary in Figure B.1).

B.2 Measuring the performance of the model
A confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the performance 
of statistical algorithms. In this case the confusion matrix for Figure B.1 is shown below in a more usual form.

Table B.1: Confusion matrix for example of Figure B.1

Confusion matrix

Predicted print quality 

Acceptable    Not acceptable

Assessed print quality Acceptable 34       2

Not acceptable  8      44
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One way to measure the performance of the model is by the percentage of correct predictions (p0) which is calculated 
as shown in Equation [B.4].

𝑝𝑝" =
(34 + 44)

(34 + 8 + 2 + 44) = 88.6	% 

 

 [B.4]

This is an important measure but, in this case, there are 36 papers which are Acceptable and 52 which are Not 
Acceptable and so the results are likely to be biased. In order to avoid this problem, Cohen’s kappa (κ) was used 
which takes into account the probability of chance agreement. This is done by measuring the probability that either 
the print is assessed or predicted as Acceptable (pA) and the probability that the print is assessed or predicted as Not 
acceptable (pN) and taking their sum (pe) as shown in Equations [B.5], [B.6] and [B.7].

𝑝𝑝" =
34 + 8

34 + 8 + 2 + 44 ×
34 + 2

34 + 8 + 2 + 44 = 0.477 × 0.409 = 0.195  [B.5]

𝑝𝑝" =
2 + 44

34 + 8 + 2 + 44 ×
8 + 44

34 + 8 + 2 + 44 = 0.523 × 0.591 = 0.309	
 

 [B.6]

𝑝𝑝" = 0.195 + 0.309 = 0.504  [B.7]

Cohen’s kappa is then defined as shown in Equation B.8.

𝜅𝜅 =
𝑝𝑝$ − 𝑝𝑝&
1 − 𝑝𝑝&

=
0.886 − 0.504
1 − 0.504 = 0.770  or 77 % [B.8]

B.3 Extending to higher dimensions
The studies have found that the model can be significantly improved when four paper properties were used in 
combination. It is not possible to show a plot in this case but these same metrics can be used to measure the 
performance of the model for any number of paper properties.

B.4 Testing the model for large and small data sets
The discussion so far has assumed that the model is built and tested using the same data set but this is not generally 
useful when the objective is to predict the result for other papers. To do that, it is usual to split the data set into two 
and use one part to build the model and the other part to test it.

For the large data set this can be done relatively successfully and (for example) 80 % of the samples (in this case 
70 samples) can be used to build the model and the remaining 20 % (in this case 18 samples) to test the model’s 
performance.

For the smaller data set, which has just 20 samples, this is not possible and the approach must be modified somehow 
and, in this case, k-fold cross-validation was used. The data set was partitioned into (say) 19 samples and 1 sample and 
this is done in all possible ways – there are 20 ways to do this. A model is built for each of these cases using 19 samples 
and then tested using 1 sample and the result recorded. The average value of the results for all 20 tests is then taken as 
the overall result.




